0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (2)
  • R5,000 - R10,000 (3)
  • -
Status
Brand

Showing 1 - 6 of 6 matches in All Departments

Bayesian Survival Analysis (Hardcover, 1st ed. 2001. Corr. 2nd printing 2004): Joseph G. Ibrahim, Minghui Chen, Debajyoti Sinha Bayesian Survival Analysis (Hardcover, 1st ed. 2001. Corr. 2nd printing 2004)
Joseph G. Ibrahim, Minghui Chen, Debajyoti Sinha
R5,382 Discovery Miles 53 820 Ships in 10 - 15 working days

Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. Several topics are addressed, including parametric models, semiparametric models based on prior processes, proportional and non-proportional hazards models, frailty models, cure rate models, model selection and comparison, joint models for longitudinal and survival data, models with time varying covariates, missing covariate data, design and monitoring of clinical trials, accelerated failure time models, models for multivariate survival data, and special types of hierarchical survival models. Also various censoring schemes are examined including right and interval censored data. Several additional topics are discussed, including noninformative and informative prior specificiations, computing posterior qualities of interest, Bayesian hypothesis testing, variable selection, model selection with nonnested models, model checking techniques using Bayesian diagnostic methods, and Markov chain Monte Carlo (MCMC) algorithms for sampling from the posteiror and predictive distributions. The book presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all essentially from the health sciences, including cancer, AIDS, and the environment. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. This book would be most suitable for second or third year graduate students in statistics or biostatistics. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute; Ming-Hui Chen is Associate Professor of Mathematical Science at Worcester Polytechnic Institute; Debajyoti Sinha is Associate Professor of Biostatistics at the Medical University of South Carolina.

Monte Carlo Methods in Bayesian Computation (Hardcover, 1st ed. 2000. Corr. 2nd printing 2001): Minghui Chen, Qi-Man Shao,... Monte Carlo Methods in Bayesian Computation (Hardcover, 1st ed. 2000. Corr. 2nd printing 2001)
Minghui Chen, Qi-Man Shao, Joseph G. Ibrahim
R2,869 Discovery Miles 28 690 Ships in 18 - 22 working days

This book examines advanced Bayesian computational methods. It presents methods for sampling from posterior distributions and discusses how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples. This book examines each of these issues in detail and heavily focuses on computing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo methods for estimation of posterior quantities, improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss computions involving model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches. The book presents an equal mixture of theory and applications involving real data. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners. Ming-Hui Chen is Associate Professor of Mathematical Sciences at Worcester Polytechnic Institute, Qu-Man Shao is Assistant Professor of Mathematics at the University of Oregon. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute.

Handbook of Survival Analysis (Paperback): John P. Klein, Hans C. van Houwelingen, Joseph G. Ibrahim, Thomas H Scheike Handbook of Survival Analysis (Paperback)
John P. Klein, Hans C. van Houwelingen, Joseph G. Ibrahim, Thomas H Scheike
R2,314 Discovery Miles 23 140 Ships in 10 - 15 working days

Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians

Monte Carlo Methods in Bayesian Computation (Paperback, Softcover reprint of the original 1st ed. 2000): Minghui Chen, Qi-Man... Monte Carlo Methods in Bayesian Computation (Paperback, Softcover reprint of the original 1st ed. 2000)
Minghui Chen, Qi-Man Shao, Joseph G. Ibrahim
R2,682 Discovery Miles 26 820 Ships in 18 - 22 working days

Dealing with methods for sampling from posterior distributions and how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples, this book addresses such topics as improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches. The book presents an equal mixture of theory and applications involving real data, and is intended as a graduate textbook or a reference book for a one-semester course at the advanced masters or Ph.D. level. It will also serve as a useful reference for applied or theoretical researchers as well as practitioners.

Handbook of Survival Analysis (Hardcover, New): John P. Klein, Hans C. van Houwelingen, Joseph G. Ibrahim, Thomas H Scheike Handbook of Survival Analysis (Hardcover, New)
John P. Klein, Hans C. van Houwelingen, Joseph G. Ibrahim, Thomas H Scheike
R5,825 Discovery Miles 58 250 Ships in 10 - 15 working days

Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians

Bayesian Survival Analysis (Paperback, Softcover reprint of hardcover 1st ed. 2001): Joseph G. Ibrahim, Minghui Chen, Debajyoti... Bayesian Survival Analysis (Paperback, Softcover reprint of hardcover 1st ed. 2001)
Joseph G. Ibrahim, Minghui Chen, Debajyoti Sinha
R5,175 Discovery Miles 51 750 Ships in 18 - 22 working days

Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. Several topics are addressed, including parametric models, semiparametric models based on prior processes, proportional and non-proportional hazards models, frailty models, cure rate models, model selection and comparison, joint models for longitudinal and survival data, models with time varying covariates, missing covariate data, design and monitoring of clinical trials, accelerated failure time models, models for multivariate survival data, and special types of hierarchical survival models. Also various censoring schemes are examined including right and interval censored data. Several additional topics are discussed, including noninformative and informative prior specificiations, computing posterior qualities of interest, Bayesian hypothesis testing, variable selection, model selection with nonnested models, model checking techniques using Bayesian diagnostic methods, and Markov chain Monte Carlo (MCMC) algorithms for sampling from the posteiror and predictive distributions. The book presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all essentially from the health sciences, including cancer, AIDS, and the environment. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. This book would be most suitable for second or third year graduate students in statistics or biostatistics. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute; Ming-Hui Chen is Associate Professor of Mathematical Science at Worcester Polytechnic Institute; Debajyoti Sinha is Associate Professor of Biostatistics at the Medical University of South Carolina.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Crucial P310 | 1TB | M.2 NVMe | 3D NAND…
R2,739 R2,527 Discovery Miles 25 270
Feed The Machine
Nickelback CD  (1)
R156 Discovery Miles 1 560
Eleanor Camp Cot
R2,999 R2,799 Discovery Miles 27 990
Ultra-Link VGA to HDMI with Audio…
R349 R309 Discovery Miles 3 090
Milex Mist Breeze
R1,799 Discovery Miles 17 990
Faber-Castell Junior Triangular Colour…
R98 R62 Discovery Miles 620
Lifespace Stainless Steel Camping…
R229 R109 Discovery Miles 1 090
Catan
 (16)
R1,347 Discovery Miles 13 470
Pritt Glue Stick (22g)
R44 R27 Discovery Miles 270
Heat - 2-Disc Director's Definitive…
Al Pacino, Robert De Niro, … Blu-ray disc  (2)
R309 Discovery Miles 3 090

 

Partners