![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This book is a collection of the various old and new results, centered around the following simple and beautiful observation of J.L. Walsh - If a function is analytic in a finite disc, and not in a larger disc, then the difference between the Lagrange interpolant of the function, at the roots of unity, and the partial sums of the Taylor series, about the origin, tends to zero in a larger disc than the radius of convergence of the Taylor series, while each of these operators converges only in the original disc. This book will be particularly useful for researchers in approximation and interpolation theory.
Paul Turan, one of the greatest Hungarian mathematicians, was born 100 years ago, on August 18, 1910. To celebrate this occasion the Hungarian Academy of Sciences, the Alfred Renyi Institute of Mathematics, the Janos Bolyai Mathematical Society and the Mathematical Institute of Eoetvoes Lorand University organized an international conference devoted to Paul Turan's main areas of interest: number theory, selected branches of analysis, and selected branches of combinatorics. The conference was held in Budapest, August 22-26, 2011. Some of the invited lectures reviewed different aspects of Paul Turan's work and influence. Most of the lectures allowed participants to report about their own work in the above mentioned areas of mathematics.
This volume contains contributions from international experts in the fields of constructive approximation. This area has reached out to encompass the computational and approximation-theoretical aspects of various interesting fields in applied mathematics such as (multivariate) approximation methods, quasi-interpolation, and approximation by (orthogonal) polynomials, as well as the modern mathematical developments in neuro fuzzy approximation, RBF-networks, industrial and engineering applications.
This book is a collection of the various old and new results, centered around the following simple and beautiful observation of J.L. Walsh - If a function is analytic in a finite disc, and not in a larger disc, then the difference between the Lagrange interpolant of the function, at the roots of unity, and the partial sums of the Taylor series, about the origin, tends to zero in a larger disc than the radius of convergence of the Taylor series, while each of these operators converges only in the original disc. This book will be particularly useful for researchers in approximation and interpolation theory.
|
![]() ![]() You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
![]()
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
Hiking Beyond Cape Town - 40 Inspiring…
Nina du Plessis, Willie Olivier
Paperback
|