Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
This volume gathers contributions in the field of partial differential equations, with a focus on mathematical models in phase transitions, complex fluids and thermomechanics. These contributions are dedicated to Professor Gianni Gilardi on the occasion of his 70th birthday. It particularly develops the following thematic areas: nonlinear dynamic and stationary equations; well-posedness of initial and boundary value problems for systems of PDEs; regularity properties for the solutions; optimal control problems and optimality conditions; feedback stabilization and stability results. Most of the articles are presented in a self-contained manner, and describe new achievements and/or the state of the art in their line of research, providing interested readers with an overview of recent advances and future research directions in PDEs.
Interest in the area of control of systems defined by partial differential Equations has increased strongly in recent years. A major reason has been the requirement of these systems for sensible continuum mechanical modelling and optimization or control techniques which account for typical physical phenomena. Particular examples of problems on which substantial progress has been made are the control and stabilization of mechatronic structures, the control of growth of thin films and crystals, the control of Laser and semi-conductor devices, and shape optimization problems for turbomachine blades, shells, smart materials and microdiffractive optics. This volume contains original articles by world reknowned experts in the fields of optimal control of partial differential equations, shape optimization, numerical methods for partial differential equations and fluid dynamics, all of whom have contributed to the analysis and solution of many of the problems discussed. The collection provides a state-of-the-art overview of the most challenging and exciting recent developments in the field. It is geared towards postgraduate students and researchers dealing with the theoretical and practical aspects of a wide variety of high technology problems in applied mathematics, fluid control, optimal design, and computer modelling.
This monograph contributes to the mathematical analysis of systems exhibiting hysteresis effects and phase transitions. Its main part begins with a detailed study of models for scalar rate independent hysteresis in the form of hysteresis operators. Applications to ferromagnetism, elastoplasticity and fatigue analysis are presented, and two representative distributed systems with hysteresis operator are discussed. The attention then shifts to the mechanisms of energy dissipation and transformation that induce a hysteretic behavior in continuous media undergoing phase transitions. After an introduction to phenomenological thermodynamic theories of phase transitions, in particular, the Landau-Ginzburg theory and phase field models, several specific models are discussed in detail. These include Falk's model for the hysteresis in shape memory alloys and the phase field models due to Caginalp and Penrose-Fife. The latter are studied both for conserved and non-conserved order parameters. A chapter presenting a mathematical model for the austenite-pearlite and austenite-martensite phase transitions in eutectoid carbon steels concludes the book.
The present monograph is intended to provide a comprehensive and accessible introduction to the optimization of elliptic systems. This area of mathematical research, which has many important applications in science and technology. has experienced an impressive development during the past two decades. There are already many good textbooks dealing with various aspects of optimal design problems. In this regard, we refer to the works of Pironneau [1984], Haslinger and Neittaanmaki [1988], [1996], Sokolowski and Zolksio [1992], Litvinov [2000], Allaire [2001], Mohammadi and Pironneau [2001], Delfour and Zolksio [2001], and Makinen and Haslinger [2003]. Already Lions [I9681 devoted a major part of his classical monograph on the optimal control of partial differential equations to the optimization of elliptic systems. Let us also mention that even the very first known problem of the calculus of variations, the brachistochrone studied by Bernoulli back in 1696. is in fact a shape optimization problem. The natural richness of this mathematical research subject, as well as the extremely large field of possible applications, has created the unusual situation that although many important results and methods have already been est- lished, there are still pressing unsolved questions. In this monograph, we aim to address some of these open problems; as a consequence, there is only a minor overlap with the textbooks already existing in the field.
The international Conference on Optimal Control of Coupled Systems of Partial Di?erential Equations was held at the Mathematisches Forschungsinstitut Ob- wolfach (www.mfo.de) from April, 17 to 23, 2005. The scienti?c program included 30 talks coveringvarious topics as controllability,feedback-control,optimality s- tems, model-reduction techniques, analysis and optimal control of ?ow problems and ?uid-structure interactions, as well as problems of shape and topology op- mization. The applications discussed during the conference range from the op- mization and control of quantum mechanical systems, the design of piezo-electric acoustic micro-mechanical devices, optimal control of crystal growth, the control of bodies immersed into a ?uid to airfoil design and much more. Thus the app- cations are across all time and length scales. Optimization and control of systems governed by partial di?erential eq- tions and more recently by variational inequalities is a very active ?eld of research in Applied Mathematics, in particular in numerical analysis, scienti?c comp- ing and optimization. In order to able to handle real-world applications, scalable and parallelizable algorithms have to be designed, implemented and validated. This requires an in-depth understanding of both the theoretical properties and the numerical realization of such structural insights. Therefore, a 'core' devel- ment within the ?eld of optimization with PDE-constraints such as the analysis of control-and-state-constrained problems, the role of obstacles, multi-phases etc. and an interdisciplinary 'diagonal' bridging regarding applications and numerical simulation are most important.
This volume gathers contributions in the field of partial differential equations, with a focus on mathematical models in phase transitions, complex fluids and thermomechanics. These contributions are dedicated to Professor Gianni Gilardi on the occasion of his 70th birthday. It particularly develops the following thematic areas: nonlinear dynamic and stationary equations; well-posedness of initial and boundary value problems for systems of PDEs; regularity properties for the solutions; optimal control problems and optimality conditions; feedback stabilization and stability results. Most of the articles are presented in a self-contained manner, and describe new achievements and/or the state of the art in their line of research, providing interested readers with an overview of recent advances and future research directions in PDEs.
Hysteresis is an exciting and mathematically challenging phenomenon that oc curs in rather different situations: jt, can be a byproduct offundamental physical mechanisms (such as phase transitions) or the consequence of a degradation or imperfection (like the play in a mechanical system), or it is built deliberately into a system in order to monitor its behaviour, as in the case of the heat control via thermostats. The delicate interplay between memory effects and the occurrence of hys teresis loops has the effect that hysteresis is a genuinely nonlinear phenomenon which is usually non-smooth and thus not easy to treat mathematically. Hence it was only in the early seventies that the group of Russian scientists around M. A. Krasnoselskii initiated a systematic mathematical investigation of the phenomenon of hysteresis which culminated in the fundamental monograph Krasnoselskii-Pokrovskii (1983). In the meantime, many mathematicians have contributed to the mathematical theory, and the important monographs of 1. Mayergoyz (1991) and A. Visintin (1994a) have appeared. We came into contact with the notion of hysteresis around the year 1980."
The present monograph is intended to provide a comprehensive and accessible introduction to the optimization of elliptic systems. This area of mathematical research, which has many important applications in science and technology. has experienced an impressive development during the past two decades. There are already many good textbooks dealing with various aspects of optimal design problems. In this regard, we refer to the works of Pironneau [1984], Haslinger and Neittaanmaki [1988], [1996], Sokolowski and Zolksio [1992], Litvinov [2000], Allaire [2001], Mohammadi and Pironneau [2001], Delfour and Zolksio [2001], and Makinen and Haslinger [2003]. Already Lions [I9681 devoted a major part of his classical monograph on the optimal control of partial differential equations to the optimization of elliptic systems. Let us also mention that even the very first known problem of the calculus of variations, the brachistochrone studied by Bernoulli back in 1696. is in fact a shape optimization problem. The natural richness of this mathematical research subject, as well as the extremely large field of possible applications, has created the unusual situation that although many important results and methods have already been est- lished, there are still pressing unsolved questions. In this monograph, we aim to address some of these open problems; as a consequence, there is only a minor overlap with the textbooks already existing in the field.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|