![]() |
![]() |
Your cart is empty |
||
Showing 1 - 25 of 32 matches in All Departments
Nanoparticle-Based Polymer Composites discusses recent advancements on the synthesis, processing, characterization and applications of this new class of hybrid materials. Chapters cover recycling and lifecycle assessment, with contributions from leading researchers in industry, academics, the government and private research institutes from across the globe. As nanoparticle-based polymer composites are now replacing traditional polymer composites in a broad range of applications such as fuel cells, electronic and biomedical devices, this book presents the latest advancements in the field. Studies have shown that incorporating metal nanoparticles in polymer matrices can improve their mechanical, thermal, electrical and barrier properties. The unique combination of these properties makes this new class of materials suitable for a broad range of different and advanced applications.
Innovations in Graphene-Based Polymer Composites reviews recent developments in this important field of research. The book's chapters focus on processing methods, functionalization, mechanical, electrical and thermal properties, applications and life cycle assessment. Leading researchers from industry, academia and government research institutions from across the globe have contributed to the book, making it a valuable reference resource for materials scientists, academic researchers and industrial engineers working on recent developments in the area of graphene-based materials, graphene-based polymer blends and composites. Readers will gain insights into what has been explored to-date, along with associated benefits and challenges for the future.
Plant Fibers, their Composites, and Applications provides a systematic and comprehensive account of recent research into plant fibers, including the synthesis of plant fiber reinforced polymer composites, characterization techniques, and a broad spectrum of applications. Plant fibers have generated great interest among material scientists due to their characteristics, which include availability, low cost, biodegradability, easy processability, excellent thermo-mechanical properties, low acoustic properties. They have been proven to be excellent replacements for synthetic fibers and have found applications in advanced polymer composites. Coverage includes every stage of working with plant fibers, including synthesis, processing, characterization, applications, recycling, and life cycle assessment of plant fibers and their composites. Drawing on work from leading researchers in industry, academia, government and private research institutions across the globe, this is a definitive one-stop reference for anyone working with plant fibers.
Advances in Bio-Based Fibres: Moving Towards a Green Society describes many novel natural fibers, their specific synthesis and characterization methods, their environmental sustainability values, their compatibility with polymer composites, and a wide range of innovative commercial engineering applications. As bio-based fiber polymer composites possess excellent mechanical, electrical and thermal properties, along with highly sustainable properties, they are an important technology for manufacturers and materials scientists seeking to improve the sustainability of their industries. This cutting-edge book draws on the latest industry practice and academic research to provide advice on technologies with applications in industries, including packaging, automotive, aerospace, biomedical and structural engineering.
Biodegradable Polymers, Blends and Composites provides a comprehensive review on recent developments in this very important research field. The book's chapters cover the various types of biodegradable polymers currently available and their composites, with discussions on preparation, properties and applications. Sections cover natural rubber-based polymer blends, soy-protein, cellulose, chitin, starch-based, PLA, PHBV, PCL, PVA, PBAT-based blends, Poly (ethylene succinate), PHB and Poly (propylene carbonates). The book will be a valuable reference resource for academic and industrial researchers, technologists and engineers working on recent developments in the area of biodegradable polymers, their blends and composites.
Tribology of Polymer Composites: Characterization, Properties, and Applications provides an exhaustive overview of the latest research, trends, applications and future directions of the tribology of polymer composites. Covering novel methods for the synthesis of polymer composites and their properties, the book starts by reviewing the fabrication techniques, wear and frictional properties of polymer composite materials. From there, it features chapters looking at the tribological behavior and properties of specific polymer composite materials such as synthetic fiber-reinforced, cellulose fiber-reinforced, wood fiber, synthetic fiber, mineral fiber-reinforced, and thermosetting composites. Final chapters cover the tribology of polymer nanocomposites and particulate polymer composites and their metal coatings. Applied examples spanning a wide range of industries are emphasized in each chapter.
Biocomposites for Industrial Applications: Construction, Biomedical, Transportation and Food Packaging reviews the properties and performance of these materials, with a focus on their intended applications. Sections cover their properties and performance, including processing conditions, structure and property relations. For biomedical applications, researchers need a broad understanding of conceptual design, physico-chemical properties, and cytotoxicity (orthopedic implants). As the usage of biocomposites has increased significantly over recent years, mainly due to the advantages these materials have when compared to synthetic composites, such as (i) renewability (ii) eco-friendly components, (iii) biodegradable aspects, and (iv) non-toxicity, this book provides a great update on the technology. These advantages will help to attract wider use in more lightweight-based applications such as (i) construction and building (ii) biomedical (iii) transportation (automotive, marine, and aerospace), and (iv) in food packaging.
This book explores the recent advances in the field of shape memory polymers, whose ease of manufacturing and wide range of potential applications have spurred interest in the field. The book presents details about the synthesis, processing, characterization, and applications of shape memory polymers, their blends and composites. It provides a correlation of physical properties of shape memory polymers with macro, micro and nano structures. The contents of this book will be of interest to researchers across academia and industry.
This book provides a systematic and comprehensive account of the recent developments in the recycling of plastic waste material. It presents state-of-the-art procedures for recycling of plastics from different sources and various characterization methods adopted in analyzing their properties. In addition, it looks into properties, processing, and applications of recycled plastic products as one of the drivers for sustainable recycling plastics especially in developing countries. This book proves a useful reference source for both engineers and researchers working in composite materials science as well as the students attending materials science, physics, chemistry, and engineering courses.
Food Packaging: Advanced Materials, Technologies, and Innovations is a one-stop reference for packaging materials researchers working across various industries. With chapters written by leading international researchers from industry, academia, government, and private research institutions, this book offers a broad view of important developments in food packaging. Presents an extensive survey of food packaging materials and modern technologies Demonstrates the potential of various materials for use in demanding applications Discusses the use of polymers, composites, nanotechnology, hybrid materials, coatings, wood-based, and other materials in packaging Describes biodegradable packaging, antimicrobial studies, and environmental issues related to packaging materials Offers current status, trends, opportunities, and future directions Aimed at advanced students, research scholars, and professionals in food packaging development, this application-oriented book will help expand the reader’s knowledge of advanced materials and their use of innovation in food packaging.
This book comprehensively covers the different topics of wood polymer composite materials mainly synthesis methods for the composite materials, various characterization techniques to study the superior properties and insights on potential advanced applications. It also discusses the chemistry, fabrication process, properties, applications, recycling and life cycle assessment of wood polymer composites. This is a useful reference source for both engineers and researchers working in composite materials science as well as the students attending materials science, physics, chemistry and engineering courses.
Polymeric Nanocomposite Materials for Sensor Applications covers all the important aspects of polymer composite-based sensors, from fundamentals to fabrication. Key chapters focus on the materials used for sensors and their characterization, properties, fabrication and classification. Various applications of polymeric sensors are also discussed in detail. This book is an essential reference resource, not only for the materials scientist, but also for researchers, academics, technologists and students working in the sensor technology industry. In modern society, sensors are used in electronics, food packaging, construction, automobile and aerospace applications. The advancement of smart technologies has increased their usage because of their affordability and reliability. Among the materials used for the fabrication of sensors, polymer composites are the most preferred because they are lightweight, versatile, low cost and easy to process.
Elastomer Blends and Composites: Principles, Characterization, Advances, and Applications presents the latest developments in natural rubber and synthetic rubber-based blends and nanocomposites, with a focus on current trends, future directions and state-of-the-art applications. The book introduces the fundamentals of natural rubber and synthetic rubbers, outlining synthesis, structure, properties, challenges and potential applications. This is followed by detailed coverage of compounding and formulations, manufacturing methods, and preparation of elastomer-based blends, composites, and nanocomposites. The next section of the book focuses on properties and characterization, examining elasticity, spectroscopy, barrier properties, and rheological, morphological, mechanical, thermal, and viscoelastic behavior, and more. This is a highly valuable resource for researchers and advanced students in rubber (or elastomer) science, polymer blends, composites, polymer science, and materials science and engineering, as well as engineers, technologists, and scientists working with rubber-based materials for advanced applications.
Polymer-Carbonaceous Filler-Based Composites for Wastewater Treatment serves as the first book to offer a concise treatment of the use of these materials in the treatment of wastewater. It provides a systematic and comprehensive account of recent developments and encompasses novel methods for the synthesis of carbonaceous derivatives-based fillers for polymer composites, their characterization techniques, and applications for the remediation of water contamination. This book seeks to: Introduces novel concepts in wastewater treatment with poly-carbonaceous composites Describes modern fabrication methods and characterization techniques Presents information on processing, safety, and disposal Discusses current research, future trends, and applications Filling the void for a one-stop reference book for researchers, this work includes contributions from leaders in the industry, academia, government, and private research institutions across the globe. Academics, researchers, scientists, engineers and students in the fields of materials and polymer engineering and wastewater treatment will benefit from this application-oriented book.
This book comprehensively summarizes the recent achievements and trends in encapsulation of micro- and nanocontainers for applications in smart materials. It covers the fundamentals of processing and techniques for encapsulation with emphasis on preparation, properties, application, and future prospects of encapsulation process for smart applications in pharmaceuticals, textiles, biomedical, food packaging, composites, friction/wear, phase change materials, and coatings. Academics, researchers, scientists, engineers, and students in the field of smart materials will benefit from this book.
Rapid Cure Composites: Materials, Processing and Manufacturing presents up-to-date information on the design criteria to formulate matrix systems for rapid curing. Emphasis is placed on the role different materials [resin compound and fiber reinforcement] play in developing fast curing composites, assessment of current and novel manufacturing techniques for adapting fast curing processes, the comparison between conventional curing and rapid curing, and different applications in various industrial sectors [e.g., aerospace, automotive, renewables and marine]. The book will be an essential reference resource for academic and industrial researchers working in the field of composite materials, processing and manufacturing organizations, materials scientists, and more. Polymer composites are widely used in several industries, including aerospace, automobile, spray and coatings, and electronics due to their lightweight and superior mechanical properties. However, one of the dominant hurdles towards their growth in commercial industries is the long curing cycle and slow production.
Polymer Coatings: Technologies and Applications provides a comprehensive account of the recent developments in polymer coatings encompassing novel methods, techniques, and a broad spectrum of applications. The chapters explore the key aspects of polymer coatings while highlighting fundamental research, different types of polymer coatings, and technology advances. This book also integrates the various aspects of these materials from synthesis to application. Current status, trends, future directions, and opportunities are also discussed. FEATURES Examines the basics to the most recent advances in all areas of polymer coatings Serves as a one-stop reference Discusses polymer-coated nanocrystals and coatings based on nanocomposites Describes morphology, spectroscopic analysis, adhesion, and rheology of polymer coatings Explores conducting, stimuli-responsive, self-healing, hydrophobic and hydrophilic, antifouling, and antibacterial polymer coatings Covers modeling and simulation With contributions from the top international researchers from industry, academia, government, and private research institutions, both new and experienced readers will benefit from this applications-oriented book. Sanjay Mavinkere Rangappa is a research scientist at the Natural Composites Research Group Lab, Academic Enhancement Department, King Mongkut's University of Technology North Bangkok, Thailand. Jyotishkumar Parameswaranpillai is a research professor at the Center of Innovation in Design and Engineering for Manufacturing, King Mongkut's University of Technology North Bangkok, Thailand. Suchart Siengchin is a professor at and president of King Mongkut's University of Technology North Bangkok, Thailand.
Polylactic Acid-Based Nanocellulose and Cellulose Composites offers a comprehensive account of the methods for the synthesis, characterization, processing, and applications of these advanced materials. This book fills a gap in the literature as the only currently available book on this topic. This book: Describes the procedures for the extraction of cellulose materials from different sources and characterization methods adopted for analyzing their properties Covers properties, processing, and applications of PLA biocomposites made using the extracted cellulose Discusses the effect of reinforcement of cellulose on the biopolymer matrix and the enhancement of biopolymer properties Examines current status, challenges, and future outlook in biocomposite research and applications The book serves as a reference for researchers, scientists, and advanced students in polymer science and engineering and materials science who are interested in cellulose polymer composites and their applications.
Polymer Coatings: Technologies and Applications provides a comprehensive account of the recent developments in polymer coatings encompassing novel methods, techniques, and a broad spectrum of applications. The chapters explore the key aspects of polymer coatings while highlighting fundamental research, different types of polymer coatings, and technology advances. This book also integrates the various aspects of these materials from synthesis to application. Current status, trends, future directions, and opportunities are also discussed. FEATURES Examines the basics to the most recent advances in all areas of polymer coatings Serves as a one-stop reference Discusses polymer-coated nanocrystals and coatings based on nanocomposites Describes morphology, spectroscopic analysis, adhesion, and rheology of polymer coatings Explores conducting, stimuli-responsive, self-healing, hydrophobic and hydrophilic, antifouling, and antibacterial polymer coatings Covers modeling and simulation With contributions from the top international researchers from industry, academia, government, and private research institutions, both new and experienced readers will benefit from this applications-oriented book. Sanjay Mavinkere Rangappa is a research scientist at the Natural Composites Research Group Lab, Academic Enhancement Department, King Mongkut's University of Technology North Bangkok, Thailand. Jyotishkumar Parameswaranpillai is a research professor at the Center of Innovation in Design and Engineering for Manufacturing, King Mongkut's University of Technology North Bangkok, Thailand. Suchart Siengchin is a professor at and president of King Mongkut's University of Technology North Bangkok, Thailand.
This book provides a comprehensive collection of the latest information on nanomaterials and nanocomposites. It covers material synthesis, processing, structure characterization, properties and applications. It presents a coherent treatment of how composite properties depend on nanostructure, and covers cutting-edge topics like bionanocomposites for sustainable development. This book summarizes many developments in the field making it an ideal resource for researchers from industry, academia, government and private research institutions.
This book provides a comprehensive account of developments in the area of lightweight polymer composites. It encompasses design and manufacturing methods for the lightweight polymer structures, various techniques, and a broad spectrum of applications. The book highlights fundamental research in lightweight polymer structures and integrates various aspects from synthesis to applications of these materials. Features Serves as a one stop reference with contributions from leading researchers from industry, academy, government, and private research institutions across the globe Explores all important aspects of lightweight polymer composite structures Offers an update of concepts, advancements, challenges, and application of lightweight structures Current status, trends, future directions, and opportunities are discussed, making it friendly for both new and experienced researchers.
Covers synthesis, properties and applications of quantum dots Discusses the modern fabrication technologies, processing, nanostructure formation, and mechanisms of reinforcement of quantum dots-polymer nanocomposites Explores the properties of quantum dots-based polymer nanocomposites Discusses the biocompatibility, suitability, and toxic effects of quantum dots-based polymer nanocomposites Reviews recent innovations, applications, opportunities, and future directions in quantum dots-based polymer nanocomposites
This book comprehensively covers the different topics of wood polymer composite materials mainly synthesis methods for the composite materials, various characterization techniques to study the superior properties and insights on potential advanced applications. It also discusses the chemistry, fabrication process, properties, applications, recycling and life cycle assessment of wood polymer composites. This is a useful reference source for both engineers and researchers working in composite materials science as well as the students attending materials science, physics, chemistry and engineering courses.
This book explores the recent advances in the field of shape memory polymers, whose ease of manufacturing and wide range of potential applications have spurred interest in the field. The book presents details about the synthesis, processing, characterization, and applications of shape memory polymers, their blends and composites. It provides a correlation of physical properties of shape memory polymers with macro, micro and nano structures. The contents of this book will be of interest to researchers across academia and industry. |
![]() ![]() You may like...
Handbook of Research Methods in Public…
Eran Vigoda-Gadot, Dana R. Vashdi
Hardcover
R6,593
Discovery Miles 65 930
|