Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Diazotrophic bacteria convert atmospheric nitrogen to plant-useable form and this input of nitrogen through biological fixation is of great agronomic importance. The contributions presented in this volume relate to free-living nitrogen fixers and the diazotrophs associated with plants. Symbiotic association of Frankia with non-legumes and cyanobacterial associations are also discussed. Research topics covered in this volume include the biochemistry and genetics of diazotrophs, recent developments in improvement of plant-microbe interactions and their molecular basis, the use of molecular probes in taxonomy and ecology of diazotrophs and reports on field applications, agronomic importance and improvement in methodologies for assessing their contribution to plants. This book provides valuable information not only for researchers working in the field of biological nitrogen fixation but also for biochemistry, molecular biologists, microbiologists and agronomists.
Saline land is a resource capable of significant production. Recent advances in research in breeding for salt tolerance in wheat, biotechnology in rice, and selection and rehabilitation of salt-tolerant plants are of economic importance in arid/saline conditions. This book gives some practical approaches for saline agriculture and afforestation, and describes examples of cultivating salt-tolerant/halophytic plants for commercial interest on salt-affected land or with highly salinized water in Australia, China, Central Asia, Egypt, Pakistan, and Russia. It also explores the possibilities of arid/saline agriculture and afforestation in UAE.
Diazotrophic bacteria convert atmospheric nitrogen to plant-useable form and this input of nitrogen through biological fixation is of great agronomic importance. The contributions presented in this volume relate to free-living nitrogen fixers and the diazotrophs associated with plants. Symbiotic association of Frankia with non-legumes and cyanobacterial associations are also discussed. Research topics covered in this volume include the biochemistry and genetics of diazotrophs, recent developments in improvement of plant-microbe interactions and their molecular basis, the use of molecular probes in taxonomy and ecology of diazotrophs and reports on field applications, agronomic importance and improvement in methodologies for assessing their contribution to plants. This book provides valuable information not only for researchers working in the field of biological nitrogen fixation but also for biochemistry, molecular biologists, microbiologists and agronomists.
Saline land is a resource capable of significant production. Recent advances in research in breeding for salt tolerance in wheat, biotechnology in rice, and selection and rehabilitation of salt-tolerant plants are of economic importance in arid/saline conditions. This book gives some practical approaches for saline agriculture and afforestation, and describes examples of cultivating salt-tolerant/halophytic plants for commercial interest on salt-affected land or with highly salinized water in Australia, China, Central Asia, Egypt, Pakistan, and Russia. It also explores the possibilities of arid/saline agriculture and afforestation in UAE.
New frontiers of science offer exciting opportunities to stretch rice research horizons. Recent advances in understanding symbiotic Rhizobium-legume interactions at the molecular level, the discovery of endophytic interactions of nitrogen-fixing organisms with non-legumes and the ability to introduce new genes into rice through transformation have created an excellent opportunity to investigate the possibilities for incorporating N2 fixation capability in rice. During a think-tank workshop organized by IRRI in 1992, the participants reaffirmed that such opportunities do exist for cereals and recommended that rice be used as a model system. Subsequently, IRRI developed a New Frontier Project to coordinate the worldwide collaborative efforts among research centers committed to reducing dependency of rice on mineral N resources. An international Rice Biological Nitrogen Fixation (BNF) working group was established to review, share research results/materials, and to catalyze research. This volume contains the deliberations made at the second working group meeting, held 13-15 October, 1996 at the National Institute of Biotechnology and Genetic Engineering (NIBGE) in Faisalabad, Pakistan. The papers presented in the meeting deal with the recent findings on different approaches related to the establishment of endophytic association, development of N2-fixing nodules similar to legumes and transfer of nif genes to rice. New frontiers of science offer exciting opportunities to stretch rice research horizons. Recent advances in understanding symbiotic Rhizobium-legume interactions at the molecular level, the discovery of endophytic interactions of nitrogen-fixing organisms with non-legumes and the ability to introduce new genes into rice through transformation have created an excellent opportunity to investigate the possibilities for incorporating N2 fixation capability in rice. During a think-tank workshop organized by IRRI in 1992, the participants reaffirmed that such opportunities do exist for cereals and recommended that rice be used as a model system. Subsequently, IRRI developed a New Frontier Project to coordinate the worldwide collaborative efforts among research centers committed to reducing dependency of rice on mineral N resources. An international Rice Biological Nitrogen Fixation (BNF) working group was established to review, share research results/materials, and to catalyze research. This volume contains the deliberations made at the second working group meeting, held 13-15 October, 1996 at the National Institute of Biotechnology and Genetic Engineering (NIBGE) in Faisalabad, Pakistan. The papers presented in the meeting deal with the recent findings on different approaches related to the establishment of endophytic association, development of N2-fixing nodules similar to legumes and transfer of nif genes to rice.
|
You may like...
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke
Paperback
|