![]() |
![]() |
Your cart is empty |
||
Showing 1 - 1 of 1 matches in All Departments
This book is a continuation of 'Acoustic and Elastic Wave Fields in
Geophysics, Part I' published in 2000. The second volume is
dedicated to propagation of linear plane, spherical and cylindrical
acoustic waves in different media. Chapter 1 is devoted to
principles of geometric acoustic in plane wave approximation. The
eikonal and transport equations are derived. Ray tracing and
wavefront construction techniques are explained. Chapter 2 deals
with dynamic properties of wave fields. The behavior of pressure
and displacements amplitudes in zero approximation is analysed in
two ways: using Poynting vector and solving the transport equation.
This chapter contains several examples related to shadow zones and
caustics. In Chapter 3 using the results of analysis of
high-frequency wave kinematics and dynamics some fundamental
aspects of Kirchhoff migration are described. Chapters 4 and 5 are
devoted to propagation of plane waves in media with flat boundaries
in the case of normal and oblique incidence. Special attention is
paid to the case when an incident angle exceeds the critical
angles. Formation of normal modes in the waveguide is discussed.
Chapter 6 deals with a spherical wave reflection and refraction.
The steepest descent method is introduced to describe the behavior
of reflected, transmitted, head and evanescent waves. In Chapter 7
propagation of stationary and transient waves in a waveguide formed
by a flat layer with low velocity are investigated. Normal modes
and waves related to the branch points of integrands under
consideration are studied. Dispersive properties of normal modes
are discussed. Chapter 8 describes wave propagation inside cylinder
in acoustic media. Several appendices are added to help the reader
understand different aspects of mathematics used in the book.
|
![]() ![]() You may like...
American Urbanism - A Historiographical…
Howard Gillette, Zane Miller
Hardcover
R2,810
Discovery Miles 28 100
|