Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 11 of 11 matches in All Departments
This book is devoted on recent developments of linear and nonlinear fractional Riemann-Liouville and Caputo integral inequalities on time scales. The book is intended for the use in the field of fractional dynamic calculus on time scales and fractional dynamic equations on time scales. It is also suitable for graduate courses in the above fields, and contains ten chapters. The aim of this book is to present a clear and well-organized treatment of the concept behind the development of mathematics as well as solution techniques. The text material of this book is presented in a readable and mathematically solid format.
This book is devoted to the multiplicative differential calculus. Its seven pedagogically organized chapters summarize the most recent contributions in this area, concluding with a section of practical problems to be assigned or for self-study. Two operations, differentiation and integration, are basic in calculus and analysis. In fact, they are the infinitesimal versions of the subtraction and addition operations on numbers, respectively. From 1967 till 1970, Michael Grossman and Robert Katz gave definitions of a new kind of derivative and integral, moving the roles of subtraction and addition to division and multiplication, and thus established a new calculus, called multiplicative calculus. It is also called an alternative or non-Newtonian calculus. Multiplicative calculus can especially be useful as a mathematical tool for economics, finance, biology, and engineering. Multiplicative Differential Calculus is written to be of interest to a wide audience of specialists such as mathematicians, physicists, engineers, and biologists. It is primarily a textbook at the senior undergraduate and beginning graduate level and may be used for a course on differential calculus. It is also for students studying engineering and science. Authors Svetlin G. Georgiev is a mathematician who has worked in various areas of the study. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, and dynamic calculus on time scales. He is also the author of Dynamic Geometry of Time Scales (CRC Press). He is a co-author of Conformable Dynamic Equations on Time Scales, with Douglas R. Anderson (CRC Press). Khaled Zennir earned his PhD in mathematics from Sidi Bel Abbes University, Algeria. He earned his highest diploma in Habilitation in Mathematics from Constantine University, Algeria. He is currently Assistant Professor at Qassim University in the Kingdom of Saudi Arabia. His research interests lie in the subjects of nonlinear hyperbolic partial differential equations: global existence, blowup, and long-time behavior. The authors have also published: Multiple Fixed-Point Theorems and Applications in the Theory of ODEs, FDEs and PDE; Boundary Value Problems on Time Scales, Volume 1 and Volume II, all with CRC Press.
This book presents an introduction to the theory of multiplicative partial differential equations (MPDEs). It is suitable for all types of basic courses on MPDEs. The author’s aim is to present a clear and well-organized treatment of the concept behind the development of mathematics and solution techniques. The text material of this book is presented in highly readable, mathematically solid format. Many practical problems are illustrated displaying a wide variety of solution techniques. The book features: - The book includes new classification and canonical forms of Second order MPDEs - Proposes a new technique to solve the multiplicative wave equation such as method of separation of variables, energy method. - The proposed technique in the book can be used to give the basic properties of multiplicative elliptic problems, the fundamental solutions, multiplicative integral representation of multiplicative harmonic functions, mean-value formulas, strong principle of maximum, the multiplicative Poisson equation, multiplicative Green functions, method of separation of variables, theorems of Liouville and Harnack.
Multiplicative Differential Equations: Volume 2 is the second part of a comprehensive approach to the subject. It continues a series of books written by the authors on multiplicative, geometric approaches to key mathematical topics. This volume is devoted to the theory of multiplicative differential systems. The asymptotic behavior of the solutions of such systems is studied. Stability theory for multiplicative linear and nonlinear systems is introduced and boundary value problems for second order multiplicative linear and nonlinear equations are explored. The authors also present first order multiplicative partial differential equations. Each chapter ends with a section of practical problems. The book is accessible to graduate students and researchers in mathematics, physics, engineering and biology.
Multiplicative Differential Equations: Volume I is the first part of a comprehensive approach to the subject. It continues a series of books written by the authors on multiplicative, geometric approaches to key mathematical topics. This volume begins with a basic introduction to multiplicative differential equations and then moves on to first and second order equations, as well as the question of existence and unique of solutions. Each chapter ends with a section of practical problems. The book is accessible to graduate students and researchers in mathematics, physics, engineering and biology.
The book is a follow-up to the first book on the topic published here. The book can be used for teaching and research purposes. The book offers different techniques for investigations of Ordinary and Partial Differential Equations and should promote interest in functional analysis.
This is the second book in a two-volume set. Boundary value problems are of interest to mathematicians, engineers, scientists and the technique of investigating these problems for time scales is unique. The key topics here are BVDs, ordinary and partial differential equations, difference equations, and integral equations and so has broad appeal. The techniques presented here are applicable to these topics and the teaching and research. This book is a different take on the topic than the competitors, most offered at a higher level. This book will be accessible to advanced undergraduates, graduate students, and appeal to researchers as well.
Boundary value problems are of interest to mathematicians, engineers, scientists and the technique of investigating these problems for time scales is unique. The key topics here are BVDs, ordinary and partial differential equations, difference equations, and integral equations and so has broad appeal. The techniques presented here are applicable to these topics and the teaching and research. This book is a different take on the topic than the competitors, most offered at a higher level. This book will be accessible to advanced undergraduates, graduate students, and appeal to researchers as well.
Multiple Fixed-Point Theorems and Applications in the Theory of ODEs, FDEs and PDEs covers all the basics of the subject of fixed-point theory and its applications with a strong focus on examples, proofs and practical problems, thus making it ideal as course material but also as a reference for self-study. Many problems in science lead to nonlinear equations T x + F x = x posed in some closed convex subset of a Banach space. In particular, ordinary, fractional, partial differential equations and integral equations can be formulated like these abstract equations. It is desirable to develop fixed-point theorems for such equations. In this book, the authors investigate the existence of multiple fixed points for some operators that are of the form T + F, where T is an expansive operator and F is a k-set contraction. This book offers the reader an overview of recent developments of multiple fixed-point theorems and their applications. About the Authors Svetlin G. Georgiev is a mathematician who has worked in various areas of mathematics. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations and dynamic calculus on time scales. Khaled Zennir is assistant professor at Qassim University, KSA. He received his PhD in mathematics in 2013 from Sidi Bel Abbes University, Algeria. He obtained his Habilitation in mathematics from Constantine University, Algeria in 2015. His research interests lie in nonlinear hyperbolic partial differential equations: global existence, blow up and long-time behavior.
This book is written as a textbook and includes examples and exercises. This is a companion volume to the author's other books published here on Multiplicative Geometry. There are no similar books on this topic.
This book on functional analysis covers all the basics of the subject (normed, Banach and Hilbert spaces, Lebesgue integration and spaces, linear operators and functionals, compact and self-adjoint operators, small parameters, fixed point theory) with a strong focus on examples, exercises and practical problems, thus making it ideal as course material but also as a reference for self-study.
|
You may like...
|