Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book presents applications of hypercomplex analysis to boundary value and initial-boundary value problems from various areas of mathematical physics. Given that quaternion and Clifford analysis offer natural and intelligent ways to enter into higher dimensions, it starts with quaternion and Clifford versions of complex function theory including series expansions with Appell polynomials, as well as Taylor and Laurent series. Several necessary function spaces are introduced, and an operator calculus based on modifications of the Dirac, Cauchy-Fueter, and Teodorescu operators and different decompositions of quaternion Hilbert spaces are proved. Finally, hypercomplex Fourier transforms are studied in detail. All this is then applied to first-order partial differential equations such as the Maxwell equations, the Carleman-Bers-Vekua system, the Schroedinger equation, and the Beltrami equation. The higher-order equations start with Riccati-type equations. Further topics include spatial fluid flow problems, image and multi-channel processing, image diffusion, linear scale invariant filtering, and others. One of the highlights is the derivation of the three-dimensional Kolosov-Mushkelishvili formulas in linear elasticity. Throughout the book the authors endeavor to present historical references and important personalities. The book is intended for a wide audience in the mathematical and engineering sciences and is accessible to readers with a basic grasp of real, complex, and functional analysis.
Clifford Algebras continues to be a fast-growing discipline, with ever-increasing applications in many scientific fields. This volume contains the lectures given at the Fourth Conference on Clifford Algebras and their Applications in Mathematical Physics, held at RWTH Aachen in May 1996. The papers represent an excellent survey of the newest developments around Clifford Analysis and its applications to theoretical physics. Audience: This book should appeal to physicists and mathematicians working in areas involving functions of complex variables, associative rings and algebras, integral transforms, operational calculus, partial differential equations, and the mathematics of physics.
Clifford Algebras continues to be a fast-growing discipline, with ever-increasing applications in many scientific fields. This volume contains the lectures given at the Fourth Conference on Clifford Algebras and their Applications in Mathematical Physics, held at RWTH Aachen in May 1996. The papers represent an excellent survey of the newest developments around Clifford Analysis and its applications to theoretical physics. Audience: This book should appeal to physicists and mathematicians working in areas involving functions of complex variables, associative rings and algebras, integral transforms, operational calculus, partial differential equations, and the mathematics of physics.
Complex analysis nowadays has higher-dimensional analoga: the algebra of complex numbers is replaced then by the non-commutative algebra of real quaternions or by Clifford algebras. During the last 30 years the so-called quaternionic and Clifford or hypercomplex analysis successfully developed to a powerful theory with many applications in analysis, engineering and mathematical physics. This textbook introduces both to classical and higher-dimensional results based on a uniform notion of holomorphy. Historical remarks, lots of examples, figures and exercises accompany each chapter. The enclosed CD-ROM contains an extensive literature database and a Maple package with comments and procedures of tools and methods explained in the book.
Die Funktionentheorie einer komplexen Variablen hat heute hAher-dimensionale Analoga: dabei wird die Algebra der komplexen Zahlen durch die nicht-kommutative Algebra der reellen Quaternionen bzw. Clifford-Algebren ersetzt. In den letzten 30 Jahren hat sich die so genannte Quaternionen- und die reelle Clifford-Analysis erfolgreich entwickelt. Eine Vielzahl von Anwendungen haben diese Funktionentheorie hAher-dimensionaler Variablen zu einem wichtigen Instrument der Analysis und deren Anwendungen in der mathematischen Physik werden lassen. Das Buch reflektiert den neuesten Stand der Forschung und entwickelt sowohl die hAher-dimensionalen Ergebnisse als auch die klassischen komplexen Resultate aus einem einheitlichen Begriff der Holomorphie. Der fundamentale Begriff der holomorphen Funktion als LAsung des Cauchy-Riemann-Systems wird im HAher-dimensionalen unter Beibehaltung der Bezeichnung als LAsung eines entsprechenden Systems partieller Differentialgleichungen 1. Ordnung verstanden. Historische Bemerkungen, zahlreiche Beispiele, viele Abbildungen sowie eine angemessene Auswahl von Aoebungsaufgaben festigen und erweitern die erworbenen Kenntnisse. Das vorliegende Buch ist fA1/4r Studenten der Mathematik, Physik und mathematisch orientierten Ingenieurstudenten im Grund- und Fachstudium geeignet. Es kann auch als Grundlage von Proseminaren oder Seminaren dienen. Die beiliegende CD enthAlt eine umfangreiche Literaturdatenbank sowie ein Maple-Package, das die im Buch eingefA1/4hrten Werkzeuge und Methoden als Kommandos bzw. vorgefertigte Prozeduren enthAlt. Einige Beispiel-Worksheets unterstA1/4tzen die Einarbeitung in das Package.
|
You may like...
|