Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This IMA Volume in Mathematics and its Applications CLASSICAL AND MODERN BRANCHING PROCESSES is based on the proceedings with the same title and was an integral part of the 1993-94 IMA program on "Emerging Applications of Probability." We would like to thank Krishna B. Athreya and Peter J agers for their hard work in organizing this meeting and in editing the proceedings. We also take this opportunity to thank the National Science Foundation, the Army Research Office, and the National Security Agency, whose financial support made this workshop possible. A vner Friedman Robert Gulliver v PREFACE The IMA workshop on Classical and Modern Branching Processes was held during June 13-171994 as part of the IMA year on Emerging Appli cations of Probability. The organizers of the year long program identified branching processes as one of the active areas in which a workshop should be held. Krish na B. Athreya and Peter Jagers were asked to organize this. The topics covered by the workshop could broadly be divided into the following areas: 1. Tree structures and branching processes; 2. Branching random walks; 3. Measure valued branching processes; 4. Branching with dependence; 5. Large deviations in branching processes; 6. Classical branching processes."
This is a graduate level textbook on measure theory and probability theory. It presents the main concepts and results in measure theory and probability theory in a simple and easy-to-understand way. It further provides heuristic explanations behind the theory to help students see the big picture. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. Prerequisites are kept to the minimal level and the book is intended primarily for first year Ph.D. students in mathematics and statistics.
This IMA Volume in Mathematics and its Applications CLASSICAL AND MODERN BRANCHING PROCESSES is based on the proceedings with the same title and was an integral part of the 1993-94 IMA program on "Emerging Applications of Probability." We would like to thank Krishna B. Athreya and Peter J agers for their hard work in organizing this meeting and in editing the proceedings. We also take this opportunity to thank the National Science Foundation, the Army Research Office, and the National Security Agency, whose financial support made this workshop possible. A vner Friedman Robert Gulliver v PREFACE The IMA workshop on Classical and Modern Branching Processes was held during June 13-171994 as part of the IMA year on Emerging Appli cations of Probability. The organizers of the year long program identified branching processes as one of the active areas in which a workshop should be held. Krish na B. Athreya and Peter Jagers were asked to organize this. The topics covered by the workshop could broadly be divided into the following areas: 1. Tree structures and branching processes; 2. Branching random walks; 3. Measure valued branching processes; 4. Branching with dependence; 5. Large deviations in branching processes; 6. Classical branching processes."
The purpose of this book is to give a unified treatment of the limit theory of branching processes. Since the publication of the important book of T E. Harris (Theory of Branching Processes, Springer, 1963) the subject has developed and matured significantly. Many of the classical limit laws are now known in their sharpest form, and there are new proofs that give insight into the results. Our work deals primarily with this decade, and thus has very little overlap with that of Harris. Only enough material is repeated to make the treatment essentially self-contained. For example, certain foundational questions on the construction of processes, to which we have nothing new to add, are not developed. There is a natural classification of branching processes according to their criticality condition, their time parameter, the single or multi-type particle cases, the Markovian or non-Markovian character of the pro cess, etc. We have tried to avoid the rather uneconomical and un enlightening approach of treating these categories independently, and by a series of similar but increasingly complicated techniques. The basic Galton-Watson process is developed in great detail in Chapters I and II."
This is a graduate level textbook on measure theory and probability theory. It presents the main concepts and results in measure theory and probability theory in a simple and easy-to-understand way. It further provides heuristic explanations behind the theory to help students see the big picture. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. Prerequisites are kept to the minimal level and the book is intended primarily for first year Ph.D. students in mathematics and statistics.
|
You may like...
|