0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling (Hardcover, 1st ed. 2022): Kyle Robert... Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling (Hardcover, 1st ed. 2022)
Kyle Robert Harrison, Saber Elsayed, Ivan Leonidovich Garanovich, Terence Weir, Sharon G. Boswell, …
R3,941 Discovery Miles 39 410 Ships in 12 - 17 working days

This book consists of eight chapters, authored by distinguished researchers and practitioners, that highlight the state of the art and recent trends in addressing the project portfolio selection and scheduling problem (PPSSP) across a variety of domains, particularly defense, social programs, supply chains, and finance. Many organizations face the challenge of selecting and scheduling a subset of available projects subject to various resource and operational constraints. In the simplest scenario, the primary objective for an organization is to maximize the value added through funding and implementing a portfolio of projects, subject to the available budget. However, there are other major difficulties that are often associated with this problem such as qualitative project benefits, multiple conflicting objectives, complex project interdependencies, workforce and manufacturing constraints, and deep uncertainty regarding project costs, benefits, and completion times. It is well known that the PPSSP is an NP-hard problem and, thus, there is no known polynomial-time algorithm for this problem. Despite the complexity associated with solving the PPSSP, many traditional approaches to this problem make use of exact solvers. While exact solvers provide definitive optimal solutions, they quickly become prohibitively expensive in terms of computation time when the problem size is increased. In contrast, evolutionary and memetic computing afford the capability for autonomous heuristic approaches and expert knowledge to be combined and thereby provide an efficient means for high-quality approximation solutions to be attained. As such, these approaches can provide near real-time decision support information for portfolio design that can be used to augment and improve existing human-centric strategic decision-making processes. This edited book provides the reader with a broad overview of the PPSSP, its associated challenges, and approaches to addressing the problem using evolutionary and memetic computing.

Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling (Paperback, 1st ed. 2022): Kyle Robert... Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling (Paperback, 1st ed. 2022)
Kyle Robert Harrison, Saber Elsayed, Ivan Leonidovich Garanovich, Terence Weir, Sharon G. Boswell, …
R4,207 Discovery Miles 42 070 Ships in 10 - 15 working days

This book consists of eight chapters, authored by distinguished researchers and practitioners, that highlight the state of the art and recent trends in addressing the project portfolio selection and scheduling problem (PPSSP) across a variety of domains, particularly defense, social programs, supply chains, and finance. Many organizations face the challenge of selecting and scheduling a subset of available projects subject to various resource and operational constraints. In the simplest scenario, the primary objective for an organization is to maximize the value added through funding and implementing a portfolio of projects, subject to the available budget. However, there are other major difficulties that are often associated with this problem such as qualitative project benefits, multiple conflicting objectives, complex project interdependencies, workforce and manufacturing constraints, and deep uncertainty regarding project costs, benefits, and completion times. It is well known that the PPSSP is an NP-hard problem and, thus, there is no known polynomial-time algorithm for this problem. Despite the complexity associated with solving the PPSSP, many traditional approaches to this problem make use of exact solvers. While exact solvers provide definitive optimal solutions, they quickly become prohibitively expensive in terms of computation time when the problem size is increased. In contrast, evolutionary and memetic computing afford the capability for autonomous heuristic approaches and expert knowledge to be combined and thereby provide an efficient means for high-quality approximation solutions to be attained. As such, these approaches can provide near real-time decision support information for portfolio design that can be used to augment and improve existing human-centric strategic decision-making processes. This edited book provides the reader with a broad overview of the PPSSP, its associated challenges, and approaches to addressing the problem using evolutionary and memetic computing.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Home Quip Stainless Steel Double Wall…
R181 R155 Discovery Miles 1 550
CritiCare® Paper Tape (25mm x 3m)(Single…
R5 Discovery Miles 50
Alcolin Cold Glue (500ml)
R101 Discovery Miles 1 010
Baby Dove Body Wash 200ml
R50 Discovery Miles 500
Huntlea Koletto - Matlow Pet Bed…
R969 R562 Discovery Miles 5 620
Home Classix Silicone Flower Design Mat…
R49 R37 Discovery Miles 370
Fine Living Eclipse Nesting Tables
R3,999 R1,900 Discovery Miles 19 000
Vital Baby® HYGIENE™ Super Soft Hand…
R45 Discovery Miles 450
John C. Maxwell Undated Planner
Paperback R399 R199 Discovery Miles 1 990
Bennett Read Steam Iron (2200W)
R592 Discovery Miles 5 920

 

Partners