0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (3)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Carleman's Formulas in Complex Analysis - Theory and Applications (Hardcover, 1993 ed.): L. A. Aizenberg Carleman's Formulas in Complex Analysis - Theory and Applications (Hardcover, 1993 ed.)
L. A. Aizenberg
R1,443 Discovery Miles 14 430 Ships in 18 - 22 working days

Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1).

Several Complex Variables II - Function Theory in Classical Domains Complex Potential Theory (Paperback, Softcover reprint of... Several Complex Variables II - Function Theory in Classical Domains Complex Potential Theory (Paperback, Softcover reprint of the original 1st ed. 1994)
L. A. Aizenberg; Translated by P.M. Gauthier; Edited by G. M. Khenkin, A.G. Vitushkin; Translated by Jr. King; Contributions by …
R1,402 Discovery Miles 14 020 Ships in 18 - 22 working days

Plurisubharmonic functions playa major role in the theory of functions of several complex variables. The extensiveness of plurisubharmonic functions, the simplicity of their definition together with the richness of their properties and. most importantly, their close connection with holomorphic functions have assured plurisubharmonic functions a lasting place in multidimensional complex analysis. (Pluri)subharmonic functions first made their appearance in the works of Hartogs at the beginning of the century. They figure in an essential way, for example, in the proof of the famous theorem of Hartogs (1906) on joint holomorphicity. Defined at first on the complex plane IC, the class of subharmonic functions became thereafter one of the most fundamental tools in the investigation of analytic functions of one or several variables. The theory of subharmonic functions was developed and generalized in various directions: subharmonic functions in Euclidean space IRn, plurisubharmonic functions in complex space en and others. Subharmonic functions and the foundations ofthe associated classical poten tial theory are sufficiently well exposed in the literature, and so we introduce here only a few fundamental results which we require. More detailed expositions can be found in the monographs of Privalov (1937), Brelot (1961), and Landkof (1966). See also Brelot (1972), where a history of the development of the theory of subharmonic functions is given."

Carleman's Formulas in Complex Analysis - Theory and Applications (Paperback, Softcover reprint of the original 1st ed.... Carleman's Formulas in Complex Analysis - Theory and Applications (Paperback, Softcover reprint of the original 1st ed. 1993)
L. A. Aizenberg
R1,419 Discovery Miles 14 190 Ships in 18 - 22 working days

Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1).

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Covenant Of Water
Abraham Verghese Paperback R315 R281 Discovery Miles 2 810
Essays on Mathematical Robotics
John Baillieul, Shankar S. Sastry, … Hardcover R2,862 Discovery Miles 28 620
Herc
Phoenicia Rogerson Paperback R380 R300 Discovery Miles 3 000
Edge Computing - From Hype to Reality
Fadi Al-Turjman Hardcover R3,335 Discovery Miles 33 350
Revolutionary Applications of…
Surjit Singh, Anca Delia Jurcut Hardcover R6,196 Discovery Miles 61 960
Data-Driven Solutions to Transportation…
Yinhai Wang, Ziqiang Zeng Paperback R2,058 Discovery Miles 20 580
Applying AI-Based IoT Systems to…
Bhatia Madhulika, Bhatia Surabhi, … Hardcover R6,677 Discovery Miles 66 770
Damaged Goods - The Rise and Fall of Sir…
Oliver Shah Paperback  (1)
R289 R264 Discovery Miles 2 640
Dis Mos Nou Afrikaans - Graad 8 - 12…
Henriette Turner, Suneen Laing Paperback R352 Discovery Miles 3 520
Database Principles - Fundamentals of…
Carlos Coronel, Keeley Crockett, … Paperback R1,109 R1,049 Discovery Miles 10 490

 

Partners