![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1).
Plurisubharmonic functions playa major role in the theory of functions of several complex variables. The extensiveness of plurisubharmonic functions, the simplicity of their definition together with the richness of their properties and. most importantly, their close connection with holomorphic functions have assured plurisubharmonic functions a lasting place in multidimensional complex analysis. (Pluri)subharmonic functions first made their appearance in the works of Hartogs at the beginning of the century. They figure in an essential way, for example, in the proof of the famous theorem of Hartogs (1906) on joint holomorphicity. Defined at first on the complex plane IC, the class of subharmonic functions became thereafter one of the most fundamental tools in the investigation of analytic functions of one or several variables. The theory of subharmonic functions was developed and generalized in various directions: subharmonic functions in Euclidean space IRn, plurisubharmonic functions in complex space en and others. Subharmonic functions and the foundations ofthe associated classical poten tial theory are sufficiently well exposed in the literature, and so we introduce here only a few fundamental results which we require. More detailed expositions can be found in the monographs of Privalov (1937), Brelot (1961), and Landkof (1966). See also Brelot (1972), where a history of the development of the theory of subharmonic functions is given."
Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1).
|
![]() ![]() You may like...
Debating Biopolitics - New Perspectives…
Marco Piasentier, Sara Raimondi
Hardcover
R3,044
Discovery Miles 30 440
The Environmental Ethics and Policy Book…
Christine Pierce, Donald VanDeVeer
Paperback
|