![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
In August, 1996, the ACS Division of Polymeric Materials: Science and Engineering hosted a symposium on Interfacial Aspects of Multicomponent Polymer Materials at the Orlando, Florida, American Chemical Society meeting. Over 50 papers and posters were presented. The symposium proper was preceded by a one-day workshop, where the. basics of this relatively new field were developed. This edited book is a direct outcome of the symposium and workshop. Every object in the universe has surfaces and interfaces. A surface is defined as that part of a material in contact with either a gas or a vacuum. An interface is defined as that part of a material in contact with a condensed phase, be it liquid or solid. Surfaces of any substance are different from their interior. The appearance of surface or interfacial tension is one simple manifestation. Polymer blends and composites usually contain very finely divided phases, which are literally full of interfaces. Because interfaces are frequently weak mechanically, they pose special problems in the manufacture of strong, tough plastics, adhesives, elastomers, coatings, and fibers. This book provides a series of papers addressing this issue. Some papers delineate the nature of the interface both chemically and physically. The use of newer instrumental methods and new theories are described. Concepts of interdiffusion and entanglement are developed. Other papers describe state-of-the-art approaches to improving the interface, via graft and block copolymers, direct covalent bonding, hydrogen bonding, and more.
I will plant in the wilderness the cedar the acacia-tree and the myrtle and the oil-tree; I will set in the desert the cypress, the plane-tree and the larch together; That they may see, and know and consider and understand together, That the hand of the Lord hath done this, *** Isaiah, 41:19 and 20 (first portion) The need to improve our utilization of the Earth's natural resources is everyone's business, from every country. This book presents papers from all parts of the world on the subject of making new or improved polymers from renewable resources, be they plastics, elastomers, fibers, coatings, or adhesives. In important ways, this book constitutes part II of an edited work published by Plenum Press in 1983, "Polymer Applications of Renewable-Resource Materials. " To that extent, about half of the authors are the same. However, their papers present an update of their research three years later. The other half of the authors are entirely new. Bo~h of these books grew out of symposia sponsored by the Polymeric Materials: Science and Engineering Division of the American Chemical Society. The papers for the present book are based loosely on a symposium held at the Miami Beach meeting in April, 1985. Unfortunately, interest in polymers from renewable resources fluctuates with the price and availability of petroleum oil. At the time of writing this preface, the price is low, and appears to be headed lower still.
For there is hope of a tree, If it be cut down, That it will sprout again And that the tender branch Thereof will not cease. Job XIV (7) Mankind has been blessed with a multitude of resources. In the beginning he utilized almost soley replenishable items such as vegetation and animal protein, for both nourishment and shelter. Gradually, such metals as copper and iron were developed and replaced wood as a material of construction. Cement and glass, although more plentiful than other minerals, also replaced the use of growing sub stances. Coal and oil became the primary sources of heat and power. Closer to the focus of this book, petroleum products began to replace the vegetable oils, tannin, wool, cotton, leather, silk, rubber, etc. in a host of applications. Surely, it was argued, the new materials did the job better and cheaper. What they didn't say is that soon we would run out of oil. In any case, research on growing natural products, now called renewable resources, slowed, and these industries sought only to maintain their status quo. The 20th Century saw an unprecedented emphasis and dependence on nonrenewable resources as energy sources (petroleum, coal, ura nium) and the fabric of technology (drugs, clothing, shelter, tires, computer parts). The predawn of the 21st Century brings a reali zation that a cyclic shift back towards the use of renewable re sources for technological application is in order."
To the surprise of practically no one, research and engineering on multi polymer materials has steadily increased through the 1960s and 1970s. More and more people are remarking that we are running out of new monomers to polymerize, and that the improved polymers of the future will depend heavily on synergistic combinations of existing materials. In the era of the mid-1960s, three distinct multipolymer combinations were recognized: polymer blends, grafts, and blocks. Although inter penetrating polymer networks, lPNs, were prepared very early in polymer history, and already named by Millar in 1960, they played a relatively low-key role in polymer research developments until the late 1960s and 1970s. I would prefer to consider the IPNs as a subdivision of the graft copolymers. Yet the unique topology of the IPNs imparts properties not easily obtainable without the presence of crosslinking. One of the objectives of this book is to point out the wealth of work done on IPNs or closely related materials. Since many papers and patents actually concerned with IPNs are not so designated, this literature is significantly larger than first imagined. It may also be that many authors will meet each other for the first time on these pages and realize that they are working on a common topology. The number of applications suggested in the patent literature is large and growing. Included are impact-resistant plastics, ion exchange resins, noise-damping materials, a type of thermoplastic elastomer, and many more."
In August, 1996, the ACS Division of Polymeric Materials: Science and Engineering hosted a symposium on Interfacial Aspects of Multicomponent Polymer Materials at the Orlando, Florida, American Chemical Society meeting. Over 50 papers and posters were presented. The symposium proper was preceded by a one-day workshop, where the. basics of this relatively new field were developed. This edited book is a direct outcome of the symposium and workshop. Every object in the universe has surfaces and interfaces. A surface is defined as that part of a material in contact with either a gas or a vacuum. An interface is defined as that part of a material in contact with a condensed phase, be it liquid or solid. Surfaces of any substance are different from their interior. The appearance of surface or interfacial tension is one simple manifestation. Polymer blends and composites usually contain very finely divided phases, which are literally full of interfaces. Because interfaces are frequently weak mechanically, they pose special problems in the manufacture of strong, tough plastics, adhesives, elastomers, coatings, and fibers. This book provides a series of papers addressing this issue. Some papers delineate the nature of the interface both chemically and physically. The use of newer instrumental methods and new theories are described. Concepts of interdiffusion and entanglement are developed. Other papers describe state-of-the-art approaches to improving the interface, via graft and block copolymers, direct covalent bonding, hydrogen bonding, and more.
An Updated Edition of the Classic Text
Odian's Principles of Polymerization:
|
![]() ![]() You may like...
The Lie Of 1652 - A Decolonised History…
Patric Tariq Mellet
Paperback
![]()
|