Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book covers the method of metric distances and its application in probability theory and other fields. The method is fundamental in the study of limit theorems and generally in assessing the quality of approximations to a given probabilistic model. The method of metric distances is developed to study stability problems and reduces to the selection of an ideal or the most appropriate metric for the problem under consideration and a comparison of probability metrics. After describing the basic structure of probability metrics and providing an analysis of the topologies in the space of probability measures generated by different types of probability metrics, the authors study stability problems by providing a characterization of the ideal metrics for a given problem and investigating the main relationships between different types of probability metrics. The presentation is provided in a general form, although specific cases are considered as they arise in the process of finding supplementary bounds or in applications to important special cases. Svetlozar T. Rachev is the Frey Family Foundation Chair of Quantitative Finance, Department of Applied Mathematics and Statistics, SUNY-Stony Brook and Chief Scientist of Finanlytica, USA. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor at EDHEC Business School and Head of Research, EDHEC-Risk Institute-Asia (Singapore). Frank J. Fabozzi is a Professor at EDHEC Business School. (USA)
Microarrays for simultaneous measurement of redundancy of RNA species are used in fundamental biology as well as in medical research. Statistically, a microarray may be considered as an observation of very high dimensionality equal to the number of expression levels measured on it. In "Statistical Methods for Microarray Data Analysis: Methods and Protocols, " expert researchers in the field detail many methods and techniques used to study microarrays, guiding the reader from microarray technology to statistical problems of specific multivariate data analysis. Written in the highly successful "Methods in Molecular Biology " series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, "Statistical Methods for Microarray Data Analysis: ""Methods and Protocols "aids scientists in continuing to study microarrays and the most current statistical methods.
Microarrays for simultaneous measurement of redundancy of RNA species are used in fundamental biology as well as in medical research. Statistically,a microarray may be considered as an observation of very high dimensionality equal to the number of expression levels measured on it. In Statistical Methods for Microarray Data Analysis: Methods and Protocols, expert researchers in the field detail many methods and techniques used to study microarrays, guiding the reader from microarray technology to statistical problems of specific multivariate data analysis. Written in the highly successful Methods in Molecular Biology (TM) series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Statistical Methods for Microarray Data Analysis: Methods and Protocols aids scientists in continuing to study microarrays and the most current statistical methods.
This book covers the method of metric distances and its application in probability theory and other fields. The method is fundamental in the study of limit theorems and generally in assessing the quality of approximations to a given probabilistic model. The method of metric distances is developed to study stability problems and reduces to the selection of an ideal or the most appropriate metric for the problem under consideration and a comparison of probability metrics. After describing the basic structure of probability metrics and providing an analysis of the topologies in the space of probability measures generated by different types of probability metrics, the authors study stability problems by providing a characterization of the ideal metrics for a given problem and investigating the main relationships between different types of probability metrics. The presentation is provided in a general form, although specific cases are considered as they arise in the process of finding supplementary bounds or in applications to important special cases. Svetlozar T. Rachev is the Frey Family Foundation Chair of Quantitative Finance, Department of Applied Mathematics and Statistics, SUNY-Stony Brook and Chief Scientist of Finanlytica, USA. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor at EDHEC Business School and Head of Research, EDHEC-Risk Institute-Asia (Singapore). Frank J. Fabozzi is a Professor at EDHEC Business School. (USA)
This volume is concerned with the problems in probability and statistics. Ill-posed problems are usually understood as those results where small changes in the assumptions lead to arbitrarily large changes in the conclusions. Such results are not very useful for practical applications where the presumptions usually hold only approximately (because even a slightest departure from the assumed model may produce an uncontrollable shift in the outcome). Often, the ill-posedness of certain practical problems is due to the lack of their precise mathematical formulation. Consequently, one can deal with such problems by replacing a given ill-posed problem with another, well-posed problem, which in some sense is 'close' to the original one. The goal in this book is to show that ill-posed problems are not just a mere curiosity in the contemporary theory of mathematical statistics and probability. On the contrary, such problems are quite common, and majority of classical results fall into this class. The objective of this book is to identify problems of this type, and re-formulate them more correctly. Thus, alternative (more precise in the above sense) versions are proposed of numerous classical theorems in the theory of probability and mathematical statistics. In addition, some non-standard problems are considered from this point of view.
|
You may like...
Freedom - Stories Celebrating the…
Amnesty International USA
Paperback
May Martin, and Other Tales of the Green…
Daniel Pierce Thompson
Paperback
R551
Discovery Miles 5 510
|