Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Many technological, socio-economic, environmental, biomedical phenomena exhibit an underlying graph structure. Valued graph allows one to incorporate the connections or links among the population units in addition. The links may provide effectively access to the part of population that is the primary target, which is the case for many unconventional sampling methods, such as indirect, network, line-intercept or adaptive cluster sampling. Or, one may be interested in the structure of the connections, in terms of the corresponding graph properties or parameters, such as when various breadth- or depth-first non-exhaustive search algorithms are applied to obtain compressed views of large often dynamic graphs. Graph sampling provides a statistical approach to study real graphs from either of these perspectives. It is based on exploring the variation over all possible sample graphs (or subgraphs) which can be taken from the given population graph, by means of the relevant known sampling probabilities. The resulting design-based inference is valid whatever the unknown properties of the given real graphs. One-of-a-kind treatise of multidisciplinary topics relevant to statistics, mathematics and data science. Probabilistic treatment of breadth-first and depth-first non-exhaustive search algorithms in graphs. Presenting cutting-edge theory and methods based on latest research. Pathfinding for future research on sampling from real graphs. Graph Sampling can primarily be used as a resource for researchers working with sampling or graph problems, and as the basis of an advanced course for post-graduate students in statistics, mathematics and data science.
The advent of "Big Data" has brought with it a rapid diversification of data sources, requiring analysis that accounts for the fact that these data have often been generated and recorded for different reasons. Data integration involves combining data residing in different sources to enable statistical inference, or to generate new statistical data for purposes that cannot be served by each source on its own. This can yield significant gains for scientific as well as commercial investigations. However, valid analysis of such data should allow for the additional uncertainty due to entity ambiguity, whenever it is not possible to state with certainty that the integrated source is the target population of interest. Analysis of Integrated Data aims to provide a solid theoretical basis for this statistical analysis in three generic settings of entity ambiguity: statistical analysis of linked datasets that may contain linkage errors; datasets created by a data fusion process, where joint statistical information is simulated using the information in marginal data from non-overlapping sources; and estimation of target population size when target units are either partially or erroneously covered in each source. Covers a range of topics under an overarching perspective of data integration. Focuses on statistical uncertainty and inference issues arising from entity ambiguity. Features state of the art methods for analysis of integrated data. Identifies the important themes that will define future research and teaching in the statistical analysis of integrated data. Analysis of Integrated Data is aimed primarily at researchers and methodologists interested in statistical methods for data from multiple sources, with a focus on data analysts in the social sciences, and in the public and private sectors.
The advent of "Big Data" has brought with it a rapid diversification of data sources, requiring analysis that accounts for the fact that these data have often been generated and recorded for different reasons. Data integration involves combining data residing in different sources to enable statistical inference, or to generate new statistical data for purposes that cannot be served by each source on its own. This can yield significant gains for scientific as well as commercial investigations. However, valid analysis of such data should allow for the additional uncertainty due to entity ambiguity, whenever it is not possible to state with certainty that the integrated source is the target population of interest. Analysis of Integrated Data aims to provide a solid theoretical basis for this statistical analysis in three generic settings of entity ambiguity: statistical analysis of linked datasets that may contain linkage errors; datasets created by a data fusion process, where joint statistical information is simulated using the information in marginal data from non-overlapping sources; and estimation of target population size when target units are either partially or erroneously covered in each source. Covers a range of topics under an overarching perspective of data integration. Focuses on statistical uncertainty and inference issues arising from entity ambiguity. Features state of the art methods for analysis of integrated data. Identifies the important themes that will define future research and teaching in the statistical analysis of integrated data. Analysis of Integrated Data is aimed primarily at researchers and methodologists interested in statistical methods for data from multiple sources, with a focus on data analysts in the social sciences, and in the public and private sectors.
|
You may like...
|