Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This timely book provides broad coverage of vehicular ad-hoc network (VANET) issues, such as security, and network selection. Machine learning based methods are applied to solve these issues. This book also includes four rigorously refereed chapters from prominent international researchers working in this subject area. The material serves as a useful reference for researchers, graduate students, and practitioners seeking solutions to VANET communication and security related issues. This book will also help readers understand how to use machine learning to address the security and communication challenges in VANETs. Vehicular ad-hoc networks (VANETs) support vehicle-to-vehicle communications and vehicle-to-infrastructure communications to improve the transmission security, help build unmanned-driving, and support booming applications of onboard units (OBUs). The high mobility of OBUs and the large-scale dynamic network with fixed roadside units (RSUs) make the VANET vulnerable to jamming. The anti-jamming communication of VANETs can be significantly improved by using unmanned aerial vehicles (UAVs) to relay the OBU message. UAVs help relay the OBU message to improve the signal-to-interference-plus-noise-ratio of the OBU signals, and thus reduce the bit-error-rate of the OBU message, especially if the serving RSUs are blocked by jammers and/or interference, which is also demonstrated in this book. This book serves as a useful reference for researchers, graduate students, and practitioners seeking solutions to VANET communication and security related issues.
This book demonstrates that the reliable and secure communication performance of maritime communications can be significantly improved by using intelligent reflecting surface (IRS) aided communication, privacy-aware Internet of Things (IoT) communications, intelligent resource management and location privacy protection. In the IRS aided maritime communication system, the reflecting elements of IRS can be intelligently controlled to change the phase of signal, and finally enhance the received signal strength of maritime ships (or sensors) or jam maritime eavesdroppers illustrated in this book. The power and spectrum resource in maritime communications can be jointly optimized to guarantee the quality of service (i.e., security and reliability requirements), and reinforcement leaning is adopted to smartly choose the resource allocation strategy. Moreover, learning based privacy-aware offloading and location privacy protection are proposed to intelligently guarantee the privacy-preserving requirements of maritime ships or (sensors). Therefore, these communication schemes based on reinforcement learning algorithms can help maritime communication systems to improve the information security, especially in dynamic and complex maritime environments. This timely book also provides broad coverage of the maritime wireless communication issues, such as reliability, security, resource management, and privacy protection. Reinforcement learning based methods are applied to solve these issues. This book includes four rigorously refereed chapters from prominent international researchers working in this subject area. The material serves as a useful reference for researchers, graduate students. Practitioners seeking solutions to maritime wireless communication and security related issues will benefit from this book as well.
This SpringerBrief examines anti-jamming transmissions in cognitive radio networks (CRNs), including several recent related research topics within this field. The author introduces the transmissions based on uncoordinated spread spectrum to address smart jammers in CRNs. The author applies game theory to investigate the interactions between secondary users and jammers while providing game theoretic solutions to suppress jamming incentives in CRNs. Later chapters evaluate the Nash equilibrium and Stackelberg equilibrium of the jamming games under various network scenarios. Professionals and researchers working in networks, wireless communications and information technology will find Anti-Jamming Transmissions in Cognitive Radio Networks valuable material as a reference. Advanced-level students studying electrical engineering and computer science will also find this brief a useful tool.
This timely book provides broad coverage of vehicular ad-hoc network (VANET) issues, such as security, and network selection. Machine learning based methods are applied to solve these issues. This book also includes four rigorously refereed chapters from prominent international researchers working in this subject area. The material serves as a useful reference for researchers, graduate students, and practitioners seeking solutions to VANET communication and security related issues. This book will also help readers understand how to use machine learning to address the security and communication challenges in VANETs. Vehicular ad-hoc networks (VANETs) support vehicle-to-vehicle communications and vehicle-to-infrastructure communications to improve the transmission security, help build unmanned-driving, and support booming applications of onboard units (OBUs). The high mobility of OBUs and the large-scale dynamic network with fixed roadside units (RSUs) make the VANET vulnerable to jamming. The anti-jamming communication of VANETs can be significantly improved by using unmanned aerial vehicles (UAVs) to relay the OBU message. UAVs help relay the OBU message to improve the signal-to-interference-plus-noise-ratio of the OBU signals, and thus reduce the bit-error-rate of the OBU message, especially if the serving RSUs are blocked by jammers and/or interference, which is also demonstrated in this book. This book serves as a useful reference for researchers, graduate students, and practitioners seeking solutions to VANET communication and security related issues.
The two volumes LNCS 11935 and 11936 constitute the proceedings of the 9th International Conference on Intelligence Science and Big Data Engineering, IScIDE 2019, held in Nanjing, China, in October 2019. The 84 full papers presented were carefully reviewed and selected from 252 submissions.The papers are organized in two parts: visual data engineering; and big data and machine learning. They cover a large range of topics including information theoretic and Bayesian approaches, probabilistic graphical models, big data analysis, neural networks and neuro-informatics, bioinformatics, computational biology and brain-computer interfaces, as well as advances in fundamental pattern recognition techniques relevant to image processing, computer vision and machine learning.
The two volumes LNCS 11935 and 11936 constitute the proceedings of the 9th International Conference on Intelligence Science and Big Data Engineering, IScIDE 2019, held in Nanjing, China, in October 2019. The 84 full papers presented were carefully reviewed and selected from 252 submissions.The papers are organized in two parts: visual data engineering; and big data and machine learning. They cover a large range of topics including information theoretic and Bayesian approaches, probabilistic graphical models, big data analysis, neural networks and neuro-informatics, bioinformatics, computational biology and brain-computer interfaces, as well as advances in fundamental pattern recognition techniques relevant to image processing, computer vision and machine learning.
|
You may like...
|