Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
Color perception plays an important role in object recognition and scene understanding both for humans and intelligent vision systems. Recent advances in digital color imaging and computer hardware technology have led to an explosion in the use of color images in a variety of applications including medical imaging, content-based image retrieval, biometrics, watermarking, digital inpainting, remote sensing, visual quality inspection, among many others. As a result, automated processing and analysis of color images has become an active area of research, to which the large number of publications of the past two decades bears witness. The multivariate nature of color image data presents new challenges for researchers and practitioners as the numerous methods developed for single channel images are often not directly applicable to multichannel ones. The goal of this volume is to summarize the state-of-the-art in the early stages of the color image processing pipeline."
Since the early 20th century, medical imaging has been dominated by monochrome imaging modalities such as x-ray, computed tomography, ultrasound, and magnetic resonance imaging. As a result, color information has been overlooked in medical image analysis applications. Recently, various medical imaging modalities that involve color information have been introduced. These include cervicography, dermoscopy, fundus photography, gastrointestinal endoscopy, microscopy, and wound photography. However, in comparison to monochrome images, the analysis of color images is a relatively unexplored area. The multivariate nature of color image data presents new challenges for researchers and practitioners as the numerous methods developed for monochrome images are often not directly applicable to multichannel images. The goal of this volume is to summarize the state-of-the-art in the utilization of color information in medical image analysis.
This book focuses on partitional clustering algorithms, which are commonly used in engineering and computer scientific applications. The goal of this volume is to summarize the state-of-the-art in partitional clustering. The book includes such topics as center-based clustering, competitive learning clustering and density-based clustering. Each chapter is contributed by a leading expert in the field.
This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering, feature extraction, and applications of unsupervised learning. Each chapter is contributed by a leading expert in the field.
The goal of this volume is to summarize the state-of-the-art in the utilization of computer vision techniques in the diagnosis of skin cancer. Malignant melanoma is one of the most rapidly increasing cancers in the world. Early diagnosis is particularly important since melanoma can be cured with a simple excision if detected early. In recent years, dermoscopy has proved valuable in visualizing the morphological structures in pigmented lesions. However, it has also been shown that dermoscopy is difficult to learn and subjective. Newer technologies such as infrared imaging, multispectral imaging, and confocal microscopy, have recently come to the forefront in providing greater diagnostic accuracy. These imaging technologies presented in this book can serve as an adjunct to physicians and provide automated skin cancer screening. Although computerized techniques cannot as yet provide a definitive diagnosis, they can be used to improve biopsy decision-making as well as early melanoma detection, especially for patients with multiple atypical nevi.
Dermoscopy is a noninvasive skin imaging technique that uses optical magnification and either liquid immersion or cross-polarized lighting to make subsurface structures more easily visible when compared to conventional clinical images. It allows for the identification of dozens of morphological features that are particularly important in identifying malignant melanoma. Dermoscopy Image Analysis summarizes the state of the art of the computerized analysis of dermoscopy images. The book begins by discussing the influence of color normalization on classification accuracy and then: Investigates gray-world, max-RGB, and shades-of-gray color constancy algorithms, showing significant gains in sensitivity and specificity on a heterogeneous set of images Proposes a new color space that highlights the distribution of underlying melanin and hemoglobin color pigments, leading to more accurate classification and border detection results Determines that the latest border detection algorithms can achieve a level of agreement that is only slightly lower than the level of agreement among experienced dermatologists Provides a comprehensive review of various methods for border detection, pigment network extraction, global pattern extraction, streak detection, and perceptually significant color detection Details a computer-aided diagnosis (CAD) system for melanomas that features an inexpensive acquisition tool, clinically meaningful features, and interpretable classification feedback Presents a highly scalable CAD system implemented in the MapReduce framework, a novel CAD system for melanomas, and an overview of dermatological image databases Describes projects that made use of a publicly available database of dermoscopy images, which contains 200 high-quality images along with their medical annotations Dermoscopy Image Analysis not only showcases recent advances but also explores future directions for this exciting subfield of medical image analysis, covering dermoscopy image analysis from preprocessing to classification.
This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering, feature extraction, and applications of unsupervised learning. Each chapter is contributed by a leading expert in the field.
This book focuses on partitional clustering algorithms, which are commonly used in engineering and computer scientific applications. The goal of this volume is to summarize the state-of-the-art in partitional clustering. The book includes such topics as center-based clustering, competitive learning clustering and density-based clustering. Each chapter is contributed by a leading expert in the field.
Color perception plays an important role in object recognition and scene understanding both for humans and intelligent vision systems. Recent advances in digital color imaging and computer hardware technology have led to an explosion in the use of color images in a variety of applications including medical imaging, content-based image retrieval, biometrics, watermarking, digital inpainting, remote sensing, visual quality inspection, among many others. As a result, automated processing and analysis of color images has become an active area of research, to which the large number of publications of the past two decades bears witness. The multivariate nature of color image data presents new challenges for researchers and practitioners as the numerous methods developed for single channel images are often not directly applicable to multichannelĀ ones. The goal of this volume is to summarize the state-of-the-art in the early stages of the color image processing pipeline.
The goal of this volume is to summarize the state-of-the-art in the utilization of computer vision techniques in the diagnosis of skin cancer. Malignant melanoma is one of the most rapidly increasing cancers in the world. Early diagnosis is particularly important since melanoma can be cured with a simple excision if detected early. In recent years, dermoscopy has proved valuable in visualizing the morphological structures in pigmented lesions. However, it has also been shown that dermoscopy is difficult to learn and subjective. Newer technologies such as infrared imaging, multispectral imaging, and confocal microscopy, have recently come to the forefront in providing greater diagnostic accuracy. These imaging technologies presented in this book can serve as an adjunct to physicians andĀ provide automated skin cancer screening. Although computerized techniques cannot as yet provide a definitive diagnosis, they can be used to improve biopsy decision-making as well as early melanoma detection, especially for patients with multiple atypical nevi.
Since the early 20th century, medical imaging has been dominated by monochrome imaging modalities such as x-ray, computed tomography, ultrasound, and magnetic resonance imaging. As a result, color information has been overlooked in medical image analysis applications. Recently, various medical imaging modalities that involve color information have been introduced. These include cervicography, dermoscopy, fundus photography, gastrointestinal endoscopy, microscopy, and wound photography. However, in comparison to monochrome images, the analysis of color images is a relatively unexplored area. The multivariate nature of color image data presents new challenges for researchers and practitioners as the numerous methods developed for monochrome images are often not directly applicable to multichannel images. The goal of this volume is to summarize the state-of-the-art in the utilization of color information in medical image analysis.
Dermoscopy is a noninvasive skin imaging technique that uses optical magnification and either liquid immersion or cross-polarized lighting to make subsurface structures more easily visible when compared to conventional clinical images. It allows for the identification of dozens of morphological features that are particularly important in identifying malignant melanoma. Dermoscopy Image Analysis summarizes the state of the art of the computerized analysis of dermoscopy images. The book begins by discussing the influence of color normalization on classification accuracy and then: Investigates gray-world, max-RGB, and shades-of-gray color constancy algorithms, showing significant gains in sensitivity and specificity on a heterogeneous set of images Proposes a new color space that highlights the distribution of underlying melanin and hemoglobin color pigments, leading to more accurate classification and border detection results Determines that the latest border detection algorithms can achieve a level of agreement that is only slightly lower than the level of agreement among experienced dermatologists Provides a comprehensive review of various methods for border detection, pigment network extraction, global pattern extraction, streak detection, and perceptually significant color detection Details a computer-aided diagnosis (CAD) system for melanomas that features an inexpensive acquisition tool, clinically meaningful features, and interpretable classification feedback Presents a highly scalable CAD system implemented in the MapReduce framework, a novel CAD system for melanomas, and an overview of dermatological image databases Describes projects that made use of a publicly available database of dermoscopy images, which contains 200 high-quality images along with their medical annotations Dermoscopy Image Analysis not only showcases recent advances but also explores future directions for this exciting subfield of medical image analysis, covering dermoscopy image analysis from preprocessing to classification.
|
You may like...
Maze Runner: Chapter II - The Scorch…
Thomas Brodie-Sangster, Nathalie Emmanuel, …
Blu-ray disc
R32
Discovery Miles 320
|