Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
This volume of the Handbook is the first of a two-volume set of reviews devoted to the rare-earth-based high-temperature oxide superconductors (commonly known as hiTC superconductors). The history of hiTC superconductors is a few months short of being 14 years old when Bednorz and Muller published their results which showed that (La, BA)2CuO4 had a superconducting transition of ~30 K, which was about 7K higher than any other known superconducting material. Within a year the upper temperature limit was raised to nearly 100K with the discovery of an ~90K superconducting transition in YBa2Cu3O7-&dgr;. The announcement of a superconductor with a transition temperature higher than the boiling point of liquid nitrogen set-off a frenzy of research on trying to find other oxide hiTC superconductors. Within a few months the maximum superconducting transition reached 110 K (Bi2Sr2Ca2Cu3010, and then 122K (TlBa2Ca3Cu4O11. It took several years to push TC up another 11 K to 133 K with the discovery of superconductivity in HgBa2Ca2Cu3O8, which is still the record holder today.
This Topics in Current Physics (TCP) Volume 34 is concerned primarily with super- conductivity and magnetism, and the mutual interaction of these two phenomena in ternary rare earth compounds. It is the companion of TCP Volume 32 - Superconduc- tivity in Ternary Compounds: Structural, Electronic and Lattice Properties. The interplay between superconductivity and magnetism has intrigued theoreticians and experimentalists alike for more than two decades. V. L. Ginzburg first addressed the question of whether or not superconductivity and ferromagnetism could coexist in 1957, and B. T. Matthias and coworkers carried out the first experimental inves- tigations on this problem in 1959. The early experiments were made on systems that consisted of a superconducting element or compound into which small concentrations of rare earth impurities with partially-filled 4f electron shells had been intro- duced. These dilute impurity systems were chosen because the scattering of conduc- tion electrons by parama9. netic rare earth impurity ions usually has a strong de- structive "pa i r breaking" effect on superconducti vity, typi ca lly drivi ng the super- conducting transition temperature to zero at impurity concentrations of only a few atomic percent. Unfortunately, analysis of these early experiments was complicated by clustering and/or the formation of short range or "glassy" types of magnetic order so that definitive conclusions regarding the coexistence of superconductivity and magnetism could not be reached.
|
You may like...
Westworld - Season 4 - The Choice
Evan Rachel Wood, Thandiwe Newton, …
DVD
R371
Discovery Miles 3 710
|