Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The cooperation and contamination between mathematicians, statisticians and econometricians working in actuarial sciences and finance is improving the research on these topics and producing numerous meaningful scientific results. This volume presents new ideas, in the form of four- to six-page papers, presented at the International Conference eMAF2020 - Mathematical and Statistical Methods for Actuarial Sciences and Finance. Due to the now sadly famous COVID-19 pandemic, the conference was held remotely through the Zoom platform offered by the Department of Economics of the Ca' Foscari University of Venice on September 18, 22 and 25, 2020. eMAF2020 is the ninth edition of an international biennial series of scientific meetings, started in 2004 at the initiative of the Department of Economics and Statistics of the University of Salerno. The effectiveness of this idea has been proven by wide participation in all editions, which have been held in Salerno (2004, 2006, 2010 and 2014), Venice (2008, 2012 and 2020), Paris (2016) and Madrid (2018). This book covers a wide variety of subjects: artificial intelligence and machine learning in finance and insurance, behavioral finance, credit risk methods and models, dynamic optimization in finance, financial data analytics, forecasting dynamics of actuarial and financial phenomena, foreign exchange markets, insurance models, interest rate models, longevity risk, models and methods for financial time series analysis, multivariate techniques for financial markets analysis, pension systems, portfolio selection and management, real-world finance, risk analysis and management, trading systems, and others. This volume is a valuable resource for academics, PhD students, practitioners, professionals and researchers. Moreover, it is also of interest to other readers with quantitative background knowledge.
The approach to many problems in economic analysis has changed drastically with the development and dissemination of new and more efficient computational techniques. Computational Economic Systems: Models, Methods & Econometrics presents a selection of papers illustrating the use of new computational methods and computing techniques to solve economic problems. Part I of the volume consists of papers which focus on modelling economic systems, presenting computational methods to investigate the evolution of behavior of economic agents, techniques to solve complex inventory models on a parallel computer and an original approach for the construction and solution of multicriteria models involving logical conditions. Contributions to Part II concern new computational approaches to economic problems. We find an application of wavelets to outlier detection. New estimation algorithms are presented, one concerning seemingly related regression models, a second one on nonlinear rational expectation models and a third one dealing with switching GARCH estimation. Three contributions contain original approaches for the solution of nonlinear rational expectation models.
This bookdescribes computational financetools. It covers
fundamental numerical analysis and computational techniques, such
asoption pricing, and givesspecial attention tosimulation and
optimization. Many chapters are organized as case studies
aroundportfolio insurance and risk estimation problems. In
particular, several chapters explain optimization heuristics and
how to use them for portfolio selection and in calibration of
estimation and option pricing models. Such practical examples allow
readers to learn the steps for solving specific problems and apply
these steps to others. At the same time, the applications are
relevant enough to make the book a useful reference. Matlab and R
sample code is provided in the text and can be downloaded from the
book's website.
The approach to many problems in economic analysis has changed drastically with the development and dissemination of new and more efficient computational techniques. Computational Economic Systems: Models, Methods & Econometrics presents a selection of papers illustrating the use of new computational methods and computing techniques to solve economic problems. Part I of the volume consists of papers which focus on modelling economic systems, presenting computational methods to investigate the evolution of behavior of economic agents, techniques to solve complex inventory models on a parallel computer and an original approach for the construction and solution of multicriteria models involving logical conditions. Contributions to Part II concern new computational approaches to economic problems. We find an application of wavelets to outlier detection. New estimation algorithms are presented, one concerning seemingly related regression models, a second one on nonlinear rational expectation models and a third one dealing with switching GARCH estimation. Three contributions contain original approaches for the solution of nonlinear rational expectation models.
The cooperation and contamination between mathematicians, statisticians and econometricians working in actuarial sciences and finance is improving the research on these topics and producing numerous meaningful scientific results. This volume presents new ideas, in the form of four- to six-page papers, presented at the International Conference eMAF2020 - Mathematical and Statistical Methods for Actuarial Sciences and Finance. Due to the now sadly famous COVID-19 pandemic, the conference was held remotely through the Zoom platform offered by the Department of Economics of the Ca' Foscari University of Venice on September 18, 22 and 25, 2020. eMAF2020 is the ninth edition of an international biennial series of scientific meetings, started in 2004 at the initiative of the Department of Economics and Statistics of the University of Salerno. The effectiveness of this idea has been proven by wide participation in all editions, which have been held in Salerno (2004, 2006, 2010 and 2014), Venice (2008, 2012 and 2020), Paris (2016) and Madrid (2018). This book covers a wide variety of subjects: artificial intelligence and machine learning in finance and insurance, behavioral finance, credit risk methods and models, dynamic optimization in finance, financial data analytics, forecasting dynamics of actuarial and financial phenomena, foreign exchange markets, insurance models, interest rate models, longevity risk, models and methods for financial time series analysis, multivariate techniques for financial markets analysis, pension systems, portfolio selection and management, real-world finance, risk analysis and management, trading systems, and others. This volume is a valuable resource for academics, PhD students, practitioners, professionals and researchers. Moreover, it is also of interest to other readers with quantitative background knowledge.
Computationally-intensive tools play an increasingly important role in financial decisions. Many financial problems-ranging from asset allocation to risk management and from option pricing to model calibration-can be efficiently handled using modern computational techniques. Numerical Methods and Optimization in Finance presents such computational techniques, with an emphasis on simulation and optimization, particularly so-called heuristics. This book treats quantitative analysis as an essentially computational discipline in which applications are put into software form and tested empirically. This revised edition includes two new chapters, a self-contained tutorial on implementing and using heuristics, and an explanation of software used for testing portfolio-selection models. Postgraduate students, researchers in programs on quantitative and computational finance, and practitioners in banks and other financial companies can benefit from this second edition of Numerical Methods and Optimization in Finance.
|
You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|