![]() |
![]() |
Your cart is empty |
||
Showing 1 - 13 of 13 matches in All Departments
Fungi are eukaryotic microorganisms that include both unicellular and multicellular species. They have a worldwide distribution and a wide range of applications in diverse sectors, from environmental, food and medicine to biotechnological innovations. Fungal biochemical genetics involves the study of the relationships between genome, proteome and metabolome, and the underlying molecular processes in both native and bioengineered fungi. This book provides a valuable resource on the challenges and potential of fungal biotechnology and related bioengineering and functional diversity for various industrial applications in the food, environmental, bioenergy and biorefining, and the biopharma sectors. In comparison to previous and related publications in the area of applied myco-biotech-engineering, this book bridges a knowledge gap in the areas related to prospects and investment as well as intellectual and technical issues. This book also provides information on recent commercial and economic interests in the area by juxtaposing the developments achieved in recent worldwide research and its many challenges.
This book gives a comprehensive overview on the various aspects of Trichoderma, a filamentous fungus ubiquitously present in soil. Topics addressed are the biology, diversity, taxonomy, ecology, biotechnology and cultivation of Trichoderma, to just name a few. Basic as well as applied aspects are covered and a special focus is given on use of Trichoderma in agriculture and beyond. Trichoderma species are widely distributed throughout the world in soil, rotting plant material, and wood. Although they are often considered as a contaminants, Trichoderma species are also known for their ability to act as biocontrol agents against various plant pathogens and plant diseases, and also as biostimulants promoting plant growth. The contents of this book will be of particular interest to, agricultural scientists, biotechnologists, plant pathologists, mycologists, and microbiologists, students, extension workers, policy makers and other stakeholders.
This volume presents the issues and challenges of crop pathogens and plant protection. Composed of the latest knowledge in plant pathology, the book covers topics such as fungal diseases of the groundnut, plant growth promoting rhizobacteria, plant pathogenic fungi in the genomics era, the increased virulence of wheat rusts and oat fungal diseases. Written by experienced and internationally recognized scientists in the field, "Future Challenges in Crop Protection Against Fungal Pathogens "is a concise yet comprehensive resource valuable for both novice as well as experienced plant scientists and researchers.
The rhizosphere is a very complex environment in which the effects of the plant on soil microorganisms and the effects of the microorganisms on the plant are interacting and are interdependent. Plant root exudates and breakdownproducts attract microbes and feed them and, in turn, the plants often bene't from the microbes. Interactions among microorg- ismsandplantrootsareessentialfornutritionalrequirementsoftheplant. Plant growth, development and productivity are largely dependent on the soil environment in the root region rhizosphere. The new techniques of studying the rhizosphere enables us to get a much better understanding of the dynamics of the rhizosphere population, such rhizosphere studies beingofinteresttoagriculturists, soilbiologists, chemists, microbiologists andmolecularbiologists. The rhizosphere microbes in?uence the root environment in several ways. They may change the oxidation-reduction potential, in?uence the availabilityofmoistureandnutrients, producegrowthinhibitingorgrowth promoting substances in the form of exudates, provide competition and possiblyinducemanyothereffects.Mycorrhizalassociationsarebene?cial in mineral uptake and in increasing root surface area for effective ion absorption. Antagonism, competitionandsynergisminsoilandtherhizoplane(r- zosphere) are the most important microbial interactions to consider in the study of rhizosphere biology. With the growing information on the production of growth regulators, competitiveness of the microbes in the rhizosphere, microsymbionts, and other factors, their effect upon plant growth will become more evident. Experiments on the introduction of microbes or their products in the rhizosphere will help to improve our understandingofthebiologyoftherhizosp
This unique compilation fulfils a great demand for a laboratory manual on mycorrhizal research describing the basic techniques, and contains chapters by eminent Indian mycorrhizologists. Chapters cover mycorrhizal dependency, mycorrhiza as biocontrol agents in agriculture, horticulture, and forestry, and the establishment of micropropagated plants.
This book gives a comprehensive overview on the various aspects of Trichoderma, a filamentous fungus ubiquitously present in soil. Topics addressed are the biology, diversity, taxonomy, ecology, biotechnology and cultivation of Trichoderma, to just name a few. Basic as well as applied aspects are covered and a special focus is given on use of Trichoderma in agriculture and beyond. Trichoderma species are widely distributed throughout the world in soil, rotting plant material, and wood. Although they are often considered as a contaminants, Trichoderma species are also known for their ability to act as biocontrol agents against various plant pathogens and plant diseases, and also as biostimulants promoting plant growth. The contents of this book will be of particular interest to, agricultural scientists, biotechnologists, plant pathologists, mycologists, and microbiologists, students, extension workers, policy makers and other stakeholders.
Fungi are eukaryotic microorganisms that include both unicellular and multicellular species. They have a worldwide distribution and a wide range of applications in diverse sectors, from environmental, food and medicine to biotechnological innovations. Fungal biochemical genetics involves the study of the relationships between genome, proteome and metabolome, and the underlying molecular processes in both native and bioengineered fungi. This book provides a valuable resource on the challenges and potential of fungal biotechnology and related bioengineering and functional diversity for various industrial applications in the food, environmental, bioenergy and biorefining, and the biopharma sectors. In comparison to previous and related publications in the area of applied myco-biotech-engineering, this book bridges a knowledge gap in the areas related to prospects and investment as well as intellectual and technical issues. This book also provides information on recent commercial and economic interests in the area by juxtaposing the developments achieved in recent worldwide research and its many challenges.
This volume presents the issues and challenges of crop pathogens and plant protection. Composed of the latest knowledge in plant pathology, the book covers topics such as fungal diseases of the groundnut, plant growth promoting rhizobacteria, plant pathogenic fungi in the genomics era, the increased virulence of wheat rusts and oat fungal diseases. Written by experienced and internationally recognized scientists in the field, Future Challenges in Crop Protection Against Fungal Pathogens is a concise yet comprehensive resource valuable for both novice as well as experienced plant scientists and researchers.
The importance of mycorrhiza for the improvement of plant growth is increasingly being realised in Agriculture and Forestry and several mycorrhizal fungi have been commercially recognised for the purpose. The aim of this book is to describe the various techniques used to study the mycorrhizal biology. Problems with preparing such a book are many. Mainly mailing of manuscripts to and from authors resulted in irregular and final editing. Every effort was made not to change the peer review original manuscript to ensure accuracy. Our sole aims is to communicate to the greatest extent possible a current world need in mycorrhizal research. Plant productivity is regulated by microbial associations established in the plant root systems. The interactions of microorganisms and plant roots are especially important in providing nutritional requirements of the plant and the associated microorganisms. Plant growth and development are controlled largely by the soil environment in the root region -rhizosphere. This is a very complex environment in which the effects of the plant on soil microorganisms and the effects of microorganisms on the plant are interacting, interdependent and highly complex. Plant root exudates and breakdown products feed the microbes and the microbe in tum often benefit the plant. Mycorrhizal fungi are important tools for increasing growth, development and yield of economically important plants, they play important role of biofertilizer which can help establish plants in nutrient deficient soils, particularly phosphorus deficient soils, arid, semi-arid and waste lands.
The rhizosphere is a very complex environment in which the effects of the plant on soil microorganisms and the effects of the microorganisms on the plant are interacting and are interdependent. Plant root exudates and breakdownproducts attract microbes and feed them and, in turn, the plants often bene't from the microbes. Interactions among microorg- ismsandplantrootsareessentialfornutritionalrequirementsoftheplant. Plant growth, development and productivity are largely dependent on the soil environment in the root region rhizosphere. The new techniques of studying the rhizosphere enables us to get a much better understanding of the dynamics of the rhizosphere population, such rhizosphere studies beingofinteresttoagriculturists, soilbiologists, chemists, microbiologists andmolecularbiologists. The rhizosphere microbes in?uence the root environment in several ways. They may change the oxidation-reduction potential, in?uence the availabilityofmoistureandnutrients, producegrowthinhibitingorgrowth promoting substances in the form of exudates, provide competition and possiblyinducemanyothereffects.Mycorrhizalassociationsarebene?cial in mineral uptake and in increasing root surface area for effective ion absorption. Antagonism, competitionandsynergisminsoilandtherhizoplane(r- zosphere) are the most important microbial interactions to consider in the study of rhizosphere biology. With the growing information on the production of growth regulators, competitiveness of the microbes in the rhizosphere, microsymbionts, and other factors, their effect upon plant growth will become more evident. Experiments on the introduction of microbes or their products in the rhizosphere will help to improve our understandingofthebiologyoftherhizosp
|
![]() ![]() You may like...
Indentured - Behind The Scenes At Gupta…
Rajesh Sundaram
Paperback
![]()
Developing Writing Skills for IELTS - A…
Sin Wang Chong, Xuejun Ye
Hardcover
R4,573
Discovery Miles 45 730
Statistics For Business And Economics
David Anderson, James Cochran, …
Paperback
![]() R1,305 Discovery Miles 13 050
|