Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Although the theory and principles of optical waveguides have been established for more than a century, the technologies have only been realized in recent decades. Optical Waveguides: From Theory to Applied Technologies combines the most relevant aspects of waveguide theory with the study of current detailed waveguiding technologies, in particular, photonic devices, telecommunication applications, and biomedical optics. With self-contained chapters written by well-known specialists, the book features both fundamentals and applications. The first three chapters examine the theoretical foundations and bases of planar optical waveguides as well as critical optical properties such as birefringence and nonlinear optical phenomena. The next several chapters focus on contemporary waveguiding technologies that include photonic devices and telecommunications. The book concludes with discussions on additional technological applications, including biomedical optical waveguides and the potential of neutron waveguides. As optical waveguides play an increasing part in modern technology, photonics will become to the 21st century what electronics were to the 20th century. Offering both novel insights for experienced professionals and introductory material for novices, this book facilitates a better understanding of the new information era-the photonics century.
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing.
As numerical/symbolic computation is an important tool for solving numerous real-life problems in optical science, many chapters include Mathematica(r) code in their appendices. The software codes and notebooks as well as color versions of the book s figures are available at www.crcpress.com.
Neutron optics studies the interactions of a beam of slow neutrons with matter. This book updates various advances on neutron optics. There will be a focus on the very active topics of neutron imaging (NI) and neutron spin optics (NSO). The book will also present applications of neutron beams in biomedicine, such as Boron Neutron Capture Therapy (BNCT) and related techniques. Features: Discusses diffraction and interference of slow neutrons, including computational approaches Reviews neutron imaging (NI) and neutron spin optics (NSO) Treats two major sources of slow neutron beams: (1) fission reactions at nuclear reactors and (2) collisions in particle accelerators (small ones, spallation sources) of charged particle beams with targets of heavy atoms Selects subjects on fundamental quantum aspects of slow neutrons and on confined propagation and waveguiding thereof Updates slow neutron beams and BNCT
Although the theory and principles of optical waveguides have been established for more than a century, the technologies have only been realized in recent decades. Optical Waveguides: From Theory to Applied Technologies combines the most relevant aspects of waveguide theory with the study of current detailed waveguiding technologies, in particular, photonic devices, telecommunication applications, and biomedical optics. With self-contained chapters written by well-known specialists, the book features both fundamentals and applications. The first three chapters examine the theoretical foundations and bases of planar optical waveguides as well as critical optical properties such as birefringence and nonlinear optical phenomena. The next several chapters focus on contemporary waveguiding technologies that include photonic devices and telecommunications. The book concludes with discussions on additional technological applications, including biomedical optical waveguides and the potential of neutron waveguides. As optical waveguides play an increasing part in modern technology, photonics will become to the 21st century what electronics were to the 20th century. Offering both novel insights for experienced professionals and introductory material for novices, this book facilitates a better understanding of the new information era-the photonics century.
|
You may like...
|