Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This volume presents lectures given at the Wisła 20-21 Winter School and Workshop: Groups, Invariants, Integrals, and Mathematical Physics, organized by the Baltic Institute of Mathematics. The lectures were dedicated to differential invariants – with a focus on Lie groups, pseudogroups, and their orbit spaces – and Poisson structures in algebra and geometry and are included here as lecture notes comprising the first two chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and category theory. Specific topics covered include: The multisymplectic and variational nature of Monge-Ampère equations in dimension four Integrability of fifth-order equations admitting a Lie symmetry algebra Applications of the van Kampen theorem for groupoids to computation of homotopy types of striped surfaces A geometric framework to compare classical systems of PDEs in the category of smooth manifolds Groups, Invariants, Integrals, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry and category theory is assumed.
This volume presents lectures given at the Wisla 19 Summer School: Differential Geometry, Differential Equations, and Mathematical Physics, which took place from August 19 - 29th, 2019 in Wisla, Poland, and was organized by the Baltic Institute of Mathematics. The lectures were dedicated to symplectic and Poisson geometry, tractor calculus, and the integration of ordinary differential equations, and are included here as lecture notes comprising the first three chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and mathematical physics. Specific topics covered include: Parabolic geometry Geometric methods for solving PDEs in physics, mathematical biology, and mathematical finance Darcy and Euler flows of real gases Differential invariants for fluid and gas flow Differential Geometry, Differential Equations, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry is assumed.
This volume presents lectures given at the Summer School Wisla 18: Nonlinear PDEs, Their Geometry, and Applications, which took place from August 20 - 30th, 2018 in Wisla, Poland, and was organized by the Baltic Institute of Mathematics. The lectures in the first part of this volume were delivered by experts in nonlinear differential equations and their applications to physics. Original research articles from members of the school comprise the second part of this volume. Much of the latter half of the volume complements the methods expounded in the first half by illustrating additional applications of geometric theory of differential equations. Various subjects are covered, providing readers a glimpse of current research. Other topics covered include thermodynamics, meteorology, and the Monge-Ampere equations. Researchers interested in the applications of nonlinear differential equations to physics will find this volume particularly useful. A knowledge of differential geometry is recommended for the first portion of the book, as well as a familiarity with basic concepts in physics.
This volume presents lectures given at the Wisla 19 Summer School: Differential Geometry, Differential Equations, and Mathematical Physics, which took place from August 19 - 29th, 2019 in Wisla, Poland, and was organized by the Baltic Institute of Mathematics. The lectures were dedicated to symplectic and Poisson geometry, tractor calculus, and the integration of ordinary differential equations, and are included here as lecture notes comprising the first three chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and mathematical physics. Specific topics covered include: Parabolic geometry Geometric methods for solving PDEs in physics, mathematical biology, and mathematical finance Darcy and Euler flows of real gases Differential invariants for fluid and gas flow Differential Geometry, Differential Equations, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry is assumed.
|
You may like...
Freedom - Stories Celebrating the…
Amnesty International USA
Paperback
The Politics Of Housing In (Post…
Kirsten Ruther, Martina Barker-Ciganikova, …
Hardcover
|