![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
This volume contains solicited articles by speakers at the workshop ranging from expository surveys to original research papers, each of which carefully refereed. They all bear witness to the very rich mathematics that is connected with the study of elementary operators, may it be multivariable spectral theory, the invariant subspace problem or tensor products of C*-algebras.
The theme of this book is operator theory on C*-algebras. The main novel tool employed is the concept of local multipliers. Originally devised by Elliott and Pedersen in the 1970's in order to study derivations and automorphisms, local multipliers of C*-algebras were developed into a powerful device by the present authors in the 1990's. The book serves two purposes. The first part provides the reader - specialist and advanced graduate student alike - with a thorough introduction to the theory of local multipliers. Only a minimal knowledge of algebra and analysis is required, as the prerequisites in both non-commutative ring theory and basic C*-algebra theory are presented in the first chapter. In the second part, local multipliers are used to obtain a wealth of information on various classes of operators on C*-algebras, including (groups of) automorphisms, derivations, elementary operators, Lie isomorphisms and Lie derivations, as well as others. Many of the results appear in print for the first time. The authors have made an effort to avoid intricate technicalities thus some of the results are not pushed to their utmost generality. Several open problems are discussed, and hints for further developments are given.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
This volume contains solicited articles by speakers at the workshop ranging from expository surveys to original research papers, each of which carefully refereed. They all bear witness to the very rich mathematics that is connected with the study of elementary operators, may it be multivariable spectral theory, the invariant subspace problem or tensor products of C*-algebras.
Many problems in operator theory lead to the consideration ofoperator equa tions, either directly or via some reformulation. More often than not, how ever, the underlying space is too 'small' to contain solutions of these equa tions and thus it has to be 'enlarged' in some way. The Berberian-Quigley enlargement of a Banach space, which allows one to convert approximate into genuine eigenvectors, serves as a classical example. In the theory of operator algebras, a C*-algebra A that turns out to be small in this sense tradition ally is enlarged to its (universal) enveloping von Neumann algebra A". This works well since von Neumann algebras are in many respects richer and, from the Banach space point of view, A" is nothing other than the second dual space of A. Among the numerous fruitful applications of this principle is the well-known Kadison-Sakai theorem ensuring that every derivation 8 on a C*-algebra A becomes inner in A", though 8 may not be inner in A. The transition from A to A" however is not an algebraic one (and cannot be since it is well known that the property of being a von Neumann algebra cannot be described purely algebraically). Hence, ifthe C*-algebra A is small in an algebraic sense, say simple, it may be inappropriate to move on to A". In such a situation, A is typically enlarged by its multiplier algebra M(A).
Classically Semisimple Rings is a textbook on rings, modules and categories, aimed at advanced undergraduate and beginning graduate students. The book presents the classical theory of semisimple rings from a modern, category-theoretic point of view. Examples from algebra are used to motivate the abstract language of category theory, which then provides a framework for the study of rings and modules, culminating in the Wedderburn-Artin classification of semisimple rings. In the last part of the book, readers are gently introduced to related topics such as tensor products, exchange modules and C*-algebras. As a final flourish, Rickart's theorem on group rings ties a number of these topics together. Each chapter ends with a selection of exercises of varying difficulty, and readers interested in the history of mathematics will find biographical sketches of important figures scattered throughout the text.Assuming previous knowledge in linear and basic abstract algebra, this book can serve as a textbook for a course in algebra, providing students with valuable early exposure to category theory.
|
![]() ![]() You may like...
Teenage Mutant Ninja Turtles: Out of the…
Megan Fox, Stephen Amell, …
Blu-ray disc
R46
Discovery Miles 460
|