Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
The first instances of deformation theory were given by Kodaira and
Spencer for complex structures and by Gerstenhaber for associative
algebras. Since then, deformation theory has been applied as a
useful tool in the study of many other mathematical structures, and
even today it plays an important role in many developments of
modern mathematics.
This book is aimed at presenting different methods and perspectives
in the theory of Quantum Groups, bridging between the algebraic,
representation theoretic, analytic, and differential-geometric
approaches. It also covers recent developments in Noncommutative
Geometry, which have close relations to quantization and quantum
group symmetries. The volume collects surveys by experts which
originate from an acitvity at the Max-Planck-Institute for
Mathematics in Bonn.
This volume comprises both research and survey articles originating from the conference on Arithmetic and Geometry around Quantization held in Istanbul in 2006. A wide range of topics related to quantization are covered, thus aiming to give a glimpse of a broad subject in very different perspectives.
Modified gravity models play an important role in contemporary theoretical cosmology. The present book proposes a novel approach to the topic based on techniques from noncommutative geometry, especially the spectral action functional as a gravity model. The book discusses applications to early universe models and slow-roll inflation models, to the problem of cosmic topology, to non-isotropic cosmologies like mixmaster universes and Bianchi IX gravitational instantons, and to multifractal structures in cosmology.Relations between noncommutative and algebro-geometric methods in cosmology is also discussed, including the occurrence of motives, periods, and modular forms in spectral models of gravity.
Modified gravity models play an important role in contemporary theoretical cosmology. The present book proposes a novel approach to the topic based on techniques from noncommutative geometry, especially the spectral action functional as a gravity model. The book discusses applications to early universe models and slow-roll inflation models, to the problem of cosmic topology, to non-isotropic cosmologies like mixmaster universes and Bianchi IX gravitational instantons, and to multifractal structures in cosmology.Relations between noncommutative and algebro-geometric methods in cosmology is also discussed, including the occurrence of motives, periods, and modular forms in spectral models of gravity.
This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer.Two different approaches to the subject are described. The first, a "bottom-up" approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of Bloch-Esnault-Kreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, "top-down" approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a Riemann-Hilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry.The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area.
This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer.Two different approaches to the subject are described. The first, a "bottom-up" approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of Bloch-Esnault-Kreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, "top-down" approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a Riemann-Hilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry.The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area.
The first instances of deformation theory were given by Kodaira and Spencer for complex structures and by Gerstenhaber for associative algebras. Since then, deformation theory has been applied as a useful tool in the study of many other mathematical structures, and even today it plays an important role in many developments of modern mathematics. This volume collects a few self-contained and peer-reviewed papers by experts which present up-to-date research topics in algebraic and motivic topology, quantum field theory, algebraic geometry, noncommutative geometry and the deformation theory of Poisson algebras. They originate from activities at the Max-Planck-Institute for Mathematics and the Hausdorff Center for Mathematics in Bonn.
In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry, operator algebras, dynamical systems, and K-Theory. This volume collects and presents up-to-date research topics in arithmetic and noncommutative geometry and ideas from physics that point to possible new connections between the fields of number theory, algebraic geometry and noncommutative geometry. The articles collected in this volume present new noncommutative geometry perspectives on classical topics of number theory and arithmetic such as modular forms, class field theory, the theory of reductive p-adic groups, Shimura varieties, the local L-factors of arithmetic varieties. They also show how arithmetic appears naturally in noncommutative geometry and in physics, in the residues of Feynman graphs, in the properties of noncommutative tori, and in the quantum Hall effect.
This book is aimed at presenting different methods and perspectives in the theory of Quantum Groups, bridging between the algebraic, representation theoretic, analytic, and differential-geometric approaches. It also covers recent developments in Noncommutative Geometry, which have close relations to quantization and quantum group symmetries. The volume collects surveys by experts which originate from an acitvity at the Max-Planck-Institute for Mathematics in Bonn.
Quantum cohomology, the theory of Frobenius manifolds and the
relations to integrable systems are flourishing areas since the
early 90's.
Written by a scholar recognized for important and diverse contributions to mathematical physics, geometry and number theory, this book is a erudite and brilliantly original exploration of parallel developments in (mostly modern) art, mathematics, and physics through the study of topics such as the still-life genre, physical and artistic visions of nothingness, the mathematical concept of space, the geometry of prime numbers, particle physics and cosmology, and artistic and mathematical encounters with randomness. A final chapter shows how the language of art, especially surrealist and dadaist art, can help raise awareness and stimulate debate around some darker aspects of the mathematical profession and some of the psychological difficulties associated to the work of mathematical research. While the intended audience does not necessarily consist of readers with a scientific background, the book will be organized in such a way that it can be read at two different levels, with some chapters that require no prior knowledge of mathematics, and some others that explore more advanced material. All key mathematical notions will be introduced and explained.
|
You may like...
Surfacing - On Being Black And Feminist…
Desiree Lewis, Gabeba Baderoon
Paperback
|