![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
Learn to build end-to-end AI apps from scratch for Android and iOS using TensorFlow Lite, CoreML, and PyTorch Key Features Build practical, real-world AI projects on Android and iOS Implement tasks such as recognizing handwritten digits, sentiment analysis, and more Explore the core functions of machine learning, deep learning, and mobile vision Book DescriptionWe're witnessing a revolution in Artificial Intelligence, thanks to breakthroughs in deep learning. Mobile Artificial Intelligence Projects empowers you to take part in this revolution by applying Artificial Intelligence (AI) techniques to design applications for natural language processing (NLP), robotics, and computer vision. This book teaches you to harness the power of AI in mobile applications along with learning the core functions of NLP, neural networks, deep learning, and mobile vision. It features a range of projects, covering tasks such as real-estate price prediction, recognizing hand-written digits, predicting car damage, and sentiment analysis. You will learn to utilize NLP and machine learning algorithms to make applications more predictive, proactive, and capable of making autonomous decisions with less human input. In the concluding chapters, you will work with popular libraries, such as TensorFlow Lite, CoreML, and PyTorch across Android and iOS platforms. By the end of this book, you will have developed exciting and more intuitive mobile applications that deliver a customized and more personalized experience to users. What you will learn Explore the concepts and fundamentals of AI, deep learning, and neural networks Implement use cases for machine vision and natural language processing Build an ML model to predict car damage using TensorFlow Deploy TensorFlow on mobile to convert speech to text Implement GAN to recognize hand-written digits Develop end-to-end mobile applications that use AI principles Work with popular libraries, such as TensorFlow Lite, CoreML, and PyTorch Who this book is forMobile Artificial Intelligence Projects is for machine learning professionals, deep learning engineers, AI engineers, and software engineers who want to integrate AI technology into mobile-based platforms and applications. Sound knowledge of machine learning and experience with any programming language is all you need to get started with this book.
Build enterprise-grade microservice ecosystems with intensive case studies using C# Key Features Learn to build message-based microservices Packed with case studies to explain the intricacies of large-scale microservices Build scalable, modular, and robust architectures with C# Book DescriptionC# is a powerful language when it comes to building applications and software architecture using rich libraries and tools such as .NET. This book will harness the strength of C# in developing microservices architectures and applications. This book shows developers how to develop an enterprise-grade, event-driven, asynchronous, message-based microservice framework using C#, .NET, and various open source tools. We will discuss how to send and receive messages, how to design many types of microservice that are truly usable in a corporate environment. We will also dissect each case and explain the code, best practices, pros and cons, and more. Through our journey, we will use many open source tools, and create file monitors, a machine learning microservice, a quantitative financial microservice that can handle bonds and credit default swaps, a deployment microservice to show you how to better manage your deployments, and memory, health status, and other microservices. By the end of this book, you will have a complete microservice ecosystem you can place into production or customize in no time. What you will learn Explore different open source tools within the context of designing microservices Learn to provide insulation to exception-prone function calls Build common messages used between microservices for communication Learn to create a microservice using our base class and interface Design a quantitative financial machine microservice Learn to design a microservice that is capable of using Blockchain technology Who this book is forC# developers, software architects, and professionals who want to master the art of designing the microservice architecture that is scalable based on environment. Developers should have a basic understanding of.NET application development using C# and Visual Studio
Create and unleash the power of neural networks by implementing C# and .Net code Key Features Get a strong foundation of neural networks with access to various machine learning and deep learning libraries Real-world case studies illustrating various neural network techniques and architectures used by practitioners Cutting-edge coverage of Deep Networks, optimization algorithms, convolutional networks, autoencoders and many more Book DescriptionNeural networks have made a surprise comeback in the last few years and have brought tremendous innovation in the world of artificial intelligence. The goal of this book is to provide C# programmers with practical guidance in solving complex computational challenges using neural networks and C# libraries such as CNTK, and TensorFlowSharp. This book will take you on a step-by-step practical journey, covering everything from the mathematical and theoretical aspects of neural networks, to building your own deep neural networks into your applications with the C# and .NET frameworks. This book begins by giving you a quick refresher of neural networks. You will learn how to build a neural network from scratch using packages such as Encog, Aforge, and Accord. You will learn about various concepts and techniques, such as deep networks, perceptrons, optimization algorithms, convolutional networks, and autoencoders. You will learn ways to add intelligent features to your .NET apps, such as facial and motion detection, object detection and labeling, language understanding, knowledge, and intelligent search. Throughout this book, you will be working on interesting demonstrations that will make it easier to implement complex neural networks in your enterprise applications. What you will learn Understand perceptrons and how to implement them in C# Learn how to train and visualize a neural network using cognitive services Perform image recognition for detecting and labeling objects using C# and TensorFlowSharp Detect specific image characteristics such as a face using Accord.Net Demonstrate particle swarm optimization using a simple XOR problem and Encog Train convolutional neural networks using ConvNetSharp Find optimal parameters for your neural network functions using numeric and heuristic optimization techniques. Who this book is forThis book is for Machine Learning Engineers, Data Scientists, Deep Learning Aspirants and Data Analysts who are now looking to move into advanced machine learning and deep learning with C#. Prior knowledge of machine learning and working experience with C# programming is required to take most out of this book
|
![]() ![]() You may like...
A Longitudinal Study of Dyslexia…
Hans-Jorgen Gjessing, Bjorn Karlsen
Hardcover
R2,592
Discovery Miles 25 920
Moving Towards Low Carbon Mobility
Moshe Givoni, David Banister
Paperback
R1,257
Discovery Miles 12 570
Creating Communities of Practice…
Oswald Jones, PingPing Meckel, …
Hardcover
R2,285
Discovery Miles 22 850
Get Out Of Your Mind - Lessons On…
Luyanda Mpahlwa, Klaus Doppler
Paperback
|