Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
For centuries, educational policymakers have believed that studying mathematics is important, in part because it develops general thinking skills that are useful throughout life. This 'Theory of Formal Discipline' (TFD) has been used as a justification for mathematics education globally. Despite this, few empirical studies have directly investigated the issue, and those which have showed mixed results.Does Mathematical Study Develop Logical Thinking? describes a rigorous investigation of the TFD. It reviews the theory's history and prior research on the topic, followed by reports on a series of recent empirical studies. It argues that, contrary to the position held by sceptics, advanced mathematical study does develop certain general thinking skills, however these are much more restricted than those typically claimed by TFD proponents.Perfect for students, researchers and policymakers in education, further education and mathematics, this book provides much needed insight into the theory and practice of the foundations of modern educational policy.
The last decade has seen a rapid growth in our understanding of the cognitive systems that underlie mathematical learning and performance, and an increased recognition of the importance of this topic. This book showcases international research on the most important cognitive issues that affect mathematical performance across a wide age range, from early childhood to adulthood. The book considers the foundational competencies of nonsymbolic and symbolic number processing before discussing arithmetic, conceptual understanding, individual differences and dyscalculia, algebra, number systems, reasoning and higher-level mathematics such as formal proof. Drawing on diverse methodology from behavioural experiments to brain imaging, each chapter discusses key theories and empirical findings and introduces key tasks used by researchers. The final chapter discusses challenges facing the future development of the field of mathematical cognition and reviews a set of open questions that mathematical cognition researchers should address to move the field forward. This book is ideal for undergraduate or graduate students of psychology, education, cognitive sciences, cognitive neuroscience and other academic and clinical audiences including mathematics educators and educational psychologists.
This book explores the results of applying empirical methods to the philosophy of logic and mathematics. Much of the work that has earned experimental philosophy a prominent place in twenty-first century philosophy is concerned with ethics or epistemology. But, as this book shows, empirical methods are just as much at home in logic and the philosophy of mathematics. Chapters demonstrate and discuss the applicability of a wide range of empirical methods including experiments, surveys, interviews, and data-mining. Distinct themes emerge that reflect recent developments in the field, such as issues concerning the logic of conditionals and the role played by visual elements in some mathematical proofs. Featuring leading figures from experimental philosophy and the fields of philosophy of logic and mathematics, this collection reveals that empirical work in these disciplines has been quietly thriving for some time and stresses the importance of collaboration between philosophers and researchers in mathematics education and mathematical cognition.
The last decade has seen a rapid growth in our understanding of the cognitive systems that underlie mathematical learning and performance, and an increased recognition of the importance of this topic. This book showcases international research on the most important cognitive issues that affect mathematical performance across a wide age range, from early childhood to adulthood. The book considers the foundational competencies of nonsymbolic and symbolic number processing before discussing arithmetic, conceptual understanding, individual differences and dyscalculia, algebra, number systems, reasoning and higher-level mathematics such as formal proof. Drawing on diverse methodology from behavioural experiments to brain imaging, each chapter discusses key theories and empirical findings and introduces key tasks used by researchers. The final chapter discusses challenges facing the future development of the field of mathematical cognition and reviews a set of open questions that mathematical cognition researchers should address to move the field forward. This book is ideal for undergraduate or graduate students of psychology, education, cognitive sciences, cognitive neuroscience and other academic and clinical audiences including mathematics educators and educational psychologists.
This book explores the results of applying empirical methods to the philosophy of logic and mathematics. Much of the work that has earned experimental philosophy a prominent place in twenty-first century philosophy is concerned with ethics or epistemology. But, as this book shows, empirical methods are just as much at home in logic and the philosophy of mathematics. Chapters demonstrate and discuss the applicability of a wide range of empirical methods including experiments, surveys, interviews, and data-mining. Distinct themes emerge that reflect recent developments in the field, such as issues concerning the logic of conditionals and the role played by visual elements in some mathematical proofs. Featuring leading figures from experimental philosophy and the fields of philosophy of logic and mathematics, this collection reveals that empirical work in these disciplines has been quietly thriving for some time and stresses the importance of collaboration between philosophers and researchers in mathematics education and mathematical cognition.
|
You may like...
The Big Bang Theory: The Complete Series…
Johnny Galecki, Jim Parsons, …
Blu-ray disc
|