![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
This book provides a snapshot of the state of the art of the rapidly evolving field of integration of geometric data in finite element computations. The contributions to this volume, based on research presented at the UCL workshop on the topic in January 2016, include three review papers on core topics such as fictitious domain methods for elasticity, trace finite element methods for partial differential equations defined on surfaces, and Nitsche's method for contact problems. Five chapters present original research articles on related theoretical topics, including Lagrange multiplier methods, interface problems, bulk-surface coupling, and approximation of partial differential equations on moving domains. Finally, two chapters discuss advanced applications such as crack propagation or flow in fractured poroelastic media. This is the first volume that provides a comprehensive overview of the field of unfitted finite element methods, including recent techniques such as cutFEM, traceFEM, ghost penalty, and augmented Lagrangian techniques. It is aimed at researchers in applied mathematics, scientific computing or computational engineering.
Systems of linear equations are ubiquitous in numerical analysis and scientific computing. and iterative methods are indispensable for the numerical treatment of such systems. This book offers a rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning. The book supplements standard texts on numerical mathematics for first-year graduate and advanced undergraduate courses and is suitable for advanced graduate classes covering numerical linear algebra and Krylov subspace and multigrid iterative methods. It will be useful to researchers interested in numerical linear algebra and engineers who use iterative methods for solving large algebraic systems.
|
![]() ![]() You may like...
United States Circuit Court of Appeals…
U S Court of Appeals Ninth Circuit
Paperback
R742
Discovery Miles 7 420
Load Assumption for Fatigue Design of…
Michael Koehler, Sven Jenne, …
Hardcover
R4,138
Discovery Miles 41 380
Time Is of the Essence - How to Create…
Edith del Mar Behr
Hardcover
|