![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
This thesis addresses the coordination chemistry and reactivity of copper and gold complexes with a focus on the elucidation of (i) the metal-mediated activation of -bonds and (ii) the migratory insertion reaction. Both processes are of considerable importance in organometallic chemistry, but remain elusive for Cu and Au complexes. In this work, the author contributes significant advances: The first -SiH complexes of copper are experimentally and computationally characterized, yielding valuable insights into -bond activation processes for copper. Evidence for a highly unusual migratory syn insertion of unsaturated organic molecules into the gold-silicon bond of silylgold (I) complexes is provided and the corresponding mechanism identified. The intermolecular oxidative addition of -SiSi, -CC and -CX (X=halogen) bonds with molecular gold (I) complexes is studied in detail, effectively demonstrating that this reaction, usually considered to be impossible for gold, is actually highly favored, provided an adequate ligand is employed. The use of small-bite angle bis (phosphine) gold (I) complexes allows for the first time the oxidative addition of -CC and -CX bonds for gold (I). These results shed light on an unexpected reactivity pattern of gold complexes and may point the way to 2-electron redox transformations mediated by this metal, opening up new perspectives in gold catalysis.
This thesis addresses the coordination chemistry and reactivity of copper and gold complexes with a focus on the elucidation of (i) the metal-mediated activation of -bonds and (ii) the migratory insertion reaction. Both processes are of considerable importance in organometallic chemistry, but remain elusive for Cu and Au complexes. In this work, the author contributes significant advances: The first -SiH complexes of copper are experimentally and computationally characterized, yielding valuable insights into -bond activation processes for copper. Evidence for a highly unusual migratory syn insertion of unsaturated organic molecules into the gold-silicon bond of silylgold (I) complexes is provided and the corresponding mechanism identified. The intermolecular oxidative addition of -SiSi, -CC and -CX (X=halogen) bonds with molecular gold (I) complexes is studied in detail, effectively demonstrating that this reaction, usually considered to be impossible for gold, is actually highly favored, provided an adequate ligand is employed. The use of small-bite angle bis (phosphine) gold (I) complexes allows for the first time the oxidative addition of -CC and -CX bonds for gold (I). These results shed light on an unexpected reactivity pattern of gold complexes and may point the way to 2-electron redox transformations mediated by this metal, opening up new perspectives in gold catalysis.
|
![]() ![]() You may like...
Handbook of Research Methods on Trust…
Fergus Lyon, Guido Moellering, …
Paperback
R1,444
Discovery Miles 14 440
Piercing the Spirit of the Sadducees
Akin O Akinyemi, Akin O Olunloyo
Hardcover
R573
Discovery Miles 5 730
Pearson REVISE BTEC Tech Award Digital…
Alan Jarvis
Digital product license key
R285
Discovery Miles 2 850
Human Rights Challenges to European…
Jurgen Bast, Frederik Von Harbou, …
Hardcover
R3,335
Discovery Miles 33 350
|