Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book is, on the one hand, a pedagogical introduction to the formalism of slopes, of semi-stability and of related concepts in the simplest possible context. It is therefore accessible to any graduate student with a basic knowledge in algebraic geometry and algebraic groups. On the other hand, the book also provides a thorough introduction to the basics of period domains, as they appear in the geometric approach to local Langlands correspondences and in the recent conjectural p-adic local Langlands program. The authors provide numerous worked examples and establish many connections to topics in the general area of algebraic groups over finite and local fields. In addition, the end of each section includes remarks on open questions, historical context and references to the literature.
The new edition of this celebrated and long-unavailable book preserves much of the content and structure of the original, which is still unrivaled in its presentation of a universal method for the resolution of a class of singularities in algebraic geometry. At the same time, the book has been completely retypeset, errors have been eliminated, proofs have been streamlined, the notation has been made consistent and uniform, an index has been added, and a guide to recent literature has been added. The authors begin by reviewing key results in the theory of toroidal embeddings and by explaining examples that illustrate the theory. Chapter II develops the theory of open self-adjoint homogeneous cones and their polyhedral reduction theory. Chapter III is devoted to basic facts on hermitian symmetric domains and culminates in the construction of toroidal compactifications of their quotients by an arithmetic group. The final chapter considers several applications of the general results. The book brings together ideas from algebraic geometry, differential geometry, representation theory and number theory, and will continue to prove of value for researchers and graduate students in these areas.
"Modular Forms and Special Cycles on Shimura Curves" is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soule arithmetic Chow groups of "M." The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M." In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions."
In this monograph "p"-adic period domains are associated to arbitrary reductive groups. Using the concept of rigid-analytic period maps the relation of "p"-adic period domains to moduli space of "p"-divisible groups is investigated. In addition, non-archimedean uniformization theorems for general Shimura varieties are established. The exposition includes background material on Grothendieck's "mysterious functor" (Fontaine theory), on moduli problems of "p"-divisible groups, on rigid analytic spaces, and on the theory of Shimura varieties, as well as an exposition of some aspects of Drinfelds' original construction. In addition, the material is illustrated throughout the book with numerous examples.
|
You may like...
|