![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Alonzo Church was undeniably one ofthe intellectual giants of theTwenti- eth Century . These articles are dedicated to his memory and illustrate the tremendous importance his ideas have had in logic , mathematics, comput er science and philosophy . Discussions of some of thesevarious contributions have appeared in The Bulletin of Symbolic Logic, and th e interested reader is invited to seek details there . Here we justtry to give somegener al sense of the scope, depth,and value of his work. Church is perhaps best known for the theorem , appropriately called " C h u r c h ' s Theorem ", that there is no decision procedure forthelogical valid- ity of formulas first-order of logic . A d ecision proce dure forthat part of logic would have come near to fulfilling Leibniz's dream of a calculus that could be mechanically used tosettle logical disputes . It was not to . be It could not be . What Church proved precisely is that there is no lambda-definable function that can i n every case providethe right answer , ' y e s ' or ' n o', tothe question of whether or not any arbitrarily given formula is valid .
Alonzo Church was undeniably one ofthe intellectual giants of theTwenti- eth Century . These articles are dedicated to his memory and illustrate the tremendous importance his ideas have had in logic , mathematics, comput er science and philosophy . Discussions of some of thesevarious contributions have appeared in The Bulletin of Symbolic Logic, and th e interested reader is invited to seek details there . Here we justtry to give somegener al sense of the scope, depth,and value of his work. Church is perhaps best known for the theorem , appropriately called " C h u r c h ' s Theorem ", that there is no decision procedure forthelogical valid- ity of formulas first-order of logic . A d ecision proce dure forthat part of logic would have come near to fulfilling Leibniz's dream of a calculus that could be mechanically used tosettle logical disputes . It was not to . be It could not be . What Church proved precisely is that there is no lambda-definable function that can i n every case providethe right answer , ' y e s ' or ' n o', tothe question of whether or not any arbitrarily given formula is valid .
1.1. The origin of the multiobjective problem and a short historical review The continuing search for a discovery of theories, tools and c- cepts applicable to decision-making processes has increased the complexity of problems eligible for analytical treatment. One of the more pertinent criticisms of current decision-making theory and practice is directed against the traditional approximation of multiple goal behavior of men and organizations by single, technically-convenient criterion. Reins- tementof the role of human judgment in more realistic, multiple goal se, ttings has been one of the ma or recent developments in the literature. Consider the following simplified problem. There is a large number of people to be transported daily between two industrial areas and their adjacent residential areas. Given some budgetary and technological c- straints we would like to determine optimal transportation modes as well as the number of units of each to be scheduled for service. What is the optimal solution? Are we interested in the cheapest transportation? Do we want the fastest, the safest, the cleanest, the most profitable, the most durable? There are many criteria which are to be considered: travel times, consumer's cost, construction cost, operating cost, expected fatalities and injuries, probability of delays, etc.
|
![]() ![]() You may like...
Interreligious Curriculum for Peace…
Isaiah Ekundayo Dada
Hardcover
The President is Missing
President Bill Clinton, James Patterson
Paperback
![]()
|