Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 18 of 18 matches in All Departments
A collection of self contained, state-of-the-art surveys. The authors have made an effort to achieve readability for mathematicians and scientists from other fields, for this series of handbooks to be a new reference for research, learning and teaching.
The volume contains carefully selected papers presented at the International Conference on Differential & Difference Equations and Applications held in Ponta Delgada - Azores, from July 4-8, 2011 in honor of Professor Ravi P. Agarwal. The objective of the gathering was to bring together researchers in the fields of differential & difference equations and to promote the exchange of ideas and research. The papers cover all areas of differential and difference equations with a special emphasis on applications.
Haim Brezis has made significant contributions in the fields of partial differential equations and functional analysis, and this volume collects contributions by his former students and collaborators in honor of his 60th anniversary at a conference in Gaeta. It presents new developments in the theory of partial differential equations with emphasis on elliptic and parabolic problems.
Many physical problems are meaningfully formulated in a
cylindrical domain. When the size of the cylinder goes to infinity,
the solutions, under certain symmetry conditions, are expected to
be identical in every cross-section of the domain. The proof of
this, however, is sometimes difficult and almost never given in the
literature. The present book partially fills this gap by providing
proofs of the asymptotic behaviour of solutions to various
important cases of linear and nonlinear problems in the theory of
elliptic and parabolic partial differential equations.
"This book covers some of the main aspects of nonlinear analysis. It concentrates on stressing the fundamental ideas instead of elaborating on the intricacies of the more esoteric ones...it encompass es] many methods of dynamical systems in quite simple and original settings. I recommend this book to anyone interested in the main and essential concepts of nonlinear analysis as well as the relevant methodologies and applications." --MATHEMATICAL REVIEWS
Celebrating the work of a renowned mathematician, it is our pleasure to present this volume containing the proceedings of the conference "Nonlinear Elliptic and Parabolic Problems: A Special Tribute to the Work of Herbert Amann", held in Zurich, June 28-30, 2004. Herbert Amann had a signi?cant and decisive impact in developing N- linear Analysis and one goal of this conference was to re?ect his broad scienti?c interest. It is our hope that this collection of papers gives the reader some idea of the subjects in which Herbert Amann had and still has a deep in?uence. Of particular importance are ?uid dynamics, reaction-di?usion systems, bifurcation theory,maximalregularity,evolutionequations,andthe theory offunction spaces. The organizers thank the following institutions for provided support for the conference: * Swiss National Foundation * Z.. urcher Hochschulstiftung * Z.. urcher Universit. atsverein * Mathematisch-naturwissenschaftliche Fakult. at (MNF). Finally,itisourpleasuretothankallcontributors,referees,andBirkh. auserVerlag, particularly T. Hemp?ing for their help and cooperation in making possible this volume.
This Research Note presents some recent advances in various important domains of partial differential equations and applied mathematics including equations and systems of elliptic and parabolic type and various applications in physics, mechanics and engineering. These topics are now part of various areas of science and have experienced tremendous development during the last decades. -------------------------------------
A collection of self contained state-of-the art surveys. The
authors have made an effort to achieve readability for
mathematicians and scientists from other fields, for this series of
handbooks to be a new reference for research, learning and
teaching.
This Research Note presents some recent advances in various
important domains of partial differential
This research presents some important domains of partial differential equations and applied mathematics including calculus of variations, control theory, modelling, numerical analysis and various applications in physics, mechanics and engineering. These topics are now part of many areas of science and have experienced tremendous development during the last decades.
The volume contains carefully selected papers presented at the International Conference on Differential & Difference Equations and Applications held in Ponta Delgada - Azores, from July 4-8, 2011 in honor of Professor Ravi P. Agarwal. The objective of the gathering was to bring together researchers in the fields of differential & difference equations and to promote the exchange of ideas and research. The papers cover all areas of differential and difference equations with a special emphasis on applications.
Many physical problems are meaningfully formulated in a
cylindrical domain. When the size of the cylinder goes to infinity,
the solutions, under certain symmetry conditions, are expected to
be identical in every cross-section of the domain. The proof of
this, however, is sometimes difficult and almost never given in the
literature. The present book partially fills this gap by providing
proofs of the asymptotic behaviour of solutions to various
important cases of linear and nonlinear problems in the theory of
elliptic and parabolic partial differential equations.
"This book covers some of the main aspects of nonlinear analysis. It concentrates on stressing the fundamental ideas instead of elaborating on the intricacies of the more esoteric ones it encompass es] many methods of dynamical systems in quite simple and original settings. I recommend this book to anyone interested in the main and essential concepts of nonlinear analysis as well as the relevant methodologies and applications." --MATHEMATICAL REVIEWS"
This handbook is the sixth and last volume in the series devoted to
stationary partial differential equations. The topics covered by
this volume include in particular domain perturbations for boundary
value problems, singular solutions of semilinear elliptic problems,
positive solutions to elliptic equations on unbounded domains,
symmetry of solutions, stationary compressible Navier-Stokes
equation, Lotka-Volterra systems with cross-diffusion, and fixed
point theory for elliptic boundary value problems.
A collection of self contained state-of-the art surveys. The
authors have made an effort to achieve readability for
mathematicians and scientists from other fields, for this series of
handbooks to be a new reference for research, learning and
teaching.
This handbook is volume III in a series devoted to stationary partial differential quations. Similarly as volumes I and II, it is a collection of self contained state-of-the-art surveys written by well known experts in the field. The topics covered by this handbook include singular and higher order equations, problems near critically, problems with anisotropic nonlinearities, dam problem, T-convergence and Schauder-type estimates. These surveys will be useful for both beginners and experts and speed up the progress of corresponding (rapidly developing and fascinating) areas of mathematics. Key features:
The book could be a good companion for any graduate student in
partial differential equations or in applied mathematics. Each
chapter brings indeed new ideas and new techniques which can be
used in these fields. The differents chapters can be read
independently and are of great pedagogical value. The advanced
researcher will find along the book the most recent achievements in
various fields.
Ausgehend vom Schulstoff, der kurz wiederholt wird, fuhrt der Autor in die Grundbegriffe der Mathematik ein, die von vielen naturwissenschaftlichen Disziplinen verwendet werden. Bei der Vertiefung des Inhaltes helfen eine Vielzahl von Abbildungen, Beispielen, Beweisen und interessanten UEbungsaufgaben mit vielen ausfuhrlichen Loesungen. Um die spezifische Denkart der Mathematik zu trainieren und den Studierenden die Furcht vor Beweisen zu nehmen, werden alle mathematischen Aussagen vollstandig, aber mit grosser Transparenz, erlautert.
|
You may like...
|