Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 14 of 14 matches in All Departments
Mathematical Modeling for Complex Fluids and Flows provides researchers and engineering practitioners encountering fluid flows with state-of-the-art knowledge in continuum concepts and associated fluid dynamics. In doing so it supplies the means to design mathematical models of these flows that adequately express the engineering physics involved. It exploits the implicit link between the turbulent flow of classical Newtonian fluids and the laminar and turbulent flow of non-Newtonian fluids such as those required in food processing and polymeric flows. The book develops a descriptive mathematical model articulated through continuum mechanics concepts for these non-Newtonian, viscoelastic fluids and turbulent flows. Each complex fluid and flow is examined in this continuum context as well as in combination with the turbulent flow of viscoelastic fluids. Some details are also explored via kinetic theory, especially viscoelastic fluids and their treatment with the Boltzmann equation. Both solution and modeling strategies for turbulent flows are laid out using continuum concepts, including a description of constructing polynomial representations and accounting for non-inertial and curvature effects. Ranging from fundamental concepts to practical methodology, and including discussion of emerging technologies, this book is ideal for those requiring a single-source assessment of current practice in this intricate yet vital field.
This book presents a snapshot of the state-of-art in the field of turbulence modeling, with an emphasis on numerical methods. Topics include direct numerical simulations, large eddy simulations, compressible turbulence, coherent structures, two-phase flow simulation and many more. It includes both theoretical contributions and experimental works, as well as chapters derived from keynote lectures, presented at the fifth Turbulence and Interactions Conference (TI 2018), which was held on June 25-29 in Martinique, France. This multifaceted collection, which reflects the conferences emphasis on the interplay of theory, experiments and computing in the process of understanding and predicting the physics of complex flows and solving related engineering problems, offers a timely guide for students, researchers and professionals in the field of applied computational fluid dynamics, turbulence modeling and related areas.
The "Turbulence and Interactions 2006" (TI2006) conference was held on the island of Porquerolles, France, May 29-June 2, 2006. The scientific sponsors of the conference were * Association Francaise de Mecanique, * CD-adapco, * DGA * Ecole Polytechnique Federale de Lausanne (EPFL), * ERCOFTAC : European Research Community on Flow, Turbulence and Combustion, * FLUENT, * The French Ministery of Foreign Affairs, * Laboratoire de Modelisation en Mecanique, Paris 6, * ONERA. The conference was a unique event. Never before have so many organisations concerned with turbulence works come together in one conference. As the title "Turbulence and Interactions" anticipated, the workshop was not run with parallel sessions but instead of one united gathering where people had strong interactions and discussions. Many of the 85 or so attendants were veterans of previous ERCOFTAC conferences. Some young researchers attended their very first int- national meeting. The organisers were fortunate in obtaining the presence of the following - vited speakers: N. Adams (TUM, Germany), C. Cambon (ECL, France), J.-P. Dussauge (Polytech Marseille, France), D.A. Gosman (Imperial College, UK), Y. Kaneda (Nagoya University, Japan), O. Simonin (IMFT, France), G. Tryggvason (WPI, USA), D. Veynante (ECP, France), F. Waleffe (University of Wisconsin, USA), Y.K. Zhou (University of California, USA). The topics covered by the 59 papers ranged from experimental results through theory to computations. The papers of the conference went through the usual - viewing process for two special issues of international journals : Computers and Fluids, and Flow, Turbulence and Combustion.
This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.
The "Turbulence and Interactions 2009" (TI2009) conference was held in Saint- Luce on the island of La Martinique, France, on May 31-June 5, 2009. The sci- tific sponsors of the conference were * DGA * Ecole Polytechnique Federale de Lausanne (EPFL), * ERCOFTAC : European Research Community on Flow, Turbulence and Combustion, * Institut Jean Le Rond d'Alembert, Paris, * ONERA. This second TI conference was very successful as it attracted 65 researchers from 17 countries. The magnificent venue and the beautiful weather helped the participants to discuss freely and casually, share ideas and projects, and spend very good times all together. The organisers were fortunate in obtaining the presence of the following - vited speakers: L. Fuchs (KTH, Stockholm and Lund University), J. Jimenez (Univ. Politecnica Madrid), C.-H. Moeng (NCAR), A. Scotti (University of North Carolina), L. Shen (Johns Hopkins University) and A.J. Smits (Princeton Univ- sity). The topics covered by the 62 contributed papers ranged from experimental results through theory to computations. They represent a snapshot of the state-- the-art in turbulence research. The papers of the conference went through the usual reviewing process and the result is given in this book of Proceedings. In the present volume, the reader will find the keynote lectures followed by the contributed talks given in alphabetical order of the first author.
This book presents a snapshot of the state-of-art in the field of turbulence modeling, with an emphasis on numerical methods. Topics include direct numerical simulations, large eddy simulations, compressible turbulence, coherent structures, two-phase flow simulation and many more. It includes both theoretical contributions and experimental works, as well as chapters derived from keynote lectures, presented at the fifth Turbulence and Interactions Conference (TI 2018), which was held on June 25-29 in Martinique, France. This multifaceted collection, which reflects the conferences emphasis on the interplay of theory, experiments and computing in the process of understanding and predicting the physics of complex flows and solving related engineering problems, offers a timely guide for students, researchers and professionals in the field of applied computational fluid dynamics, turbulence modeling and related areas.
The "Turbulence and Interactions 2006" (TI2006) conference was held on the island of Porquerolles, France, May 29-June 2, 2006. The scientific sponsors of the conference were * Association Francaise de Mecanique, * CD-adapco, * DGA * Ecole Polytechnique Federale de Lausanne (EPFL), * ERCOFTAC : European Research Community on Flow, Turbulence and Combustion, * FLUENT, * The French Ministery of Foreign Affairs, * Laboratoire de Modelisation en Mecanique, Paris 6, * ONERA. The conference was a unique event. Never before have so many organisations concerned with turbulence works come together in one conference. As the title "Turbulence and Interactions" anticipated, the workshop was not run with parallel sessions but instead of one united gathering where people had strong interactions and discussions. Many of the 85 or so attendants were veterans of previous ERCOFTAC conferences. Some young researchers attended their very first int- national meeting. The organisers were fortunate in obtaining the presence of the following - vited speakers: N. Adams (TUM, Germany), C. Cambon (ECL, France), J.-P. Dussauge (Polytech Marseille, France), D.A. Gosman (Imperial College, UK), Y. Kaneda (Nagoya University, Japan), O. Simonin (IMFT, France), G. Tryggvason (WPI, USA), D. Veynante (ECP, France), F. Waleffe (University of Wisconsin, USA), Y.K. Zhou (University of California, USA). The topics covered by the 59 papers ranged from experimental results through theory to computations. The papers of the conference went through the usual - viewing process for two special issues of international journals : Computers and Fluids, and Flow, Turbulence and Combustion.
The "Turbulence and Interactions 2009" (TI2009) conference was held in Saint- Luce on the island of La Martinique, France, on May 31-June 5, 2009. The sci- tific sponsors of the conference were * DGA * Ecole Polytechnique Federale de Lausanne (EPFL), * ERCOFTAC : European Research Community on Flow, Turbulence and Combustion, * Institut Jean Le Rond d'Alembert, Paris, * ONERA. This second TI conference was very successful as it attracted 65 researchers from 17 countries. The magnificent venue and the beautiful weather helped the participants to discuss freely and casually, share ideas and projects, and spend very good times all together. The organisers were fortunate in obtaining the presence of the following - vited speakers: L. Fuchs (KTH, Stockholm and Lund University), J. Jimenez (Univ. Politecnica Madrid), C.-H. Moeng (NCAR), A. Scotti (University of North Carolina), L. Shen (Johns Hopkins University) and A.J. Smits (Princeton Univ- sity). The topics covered by the 62 contributed papers ranged from experimental results through theory to computations. They represent a snapshot of the state-- the-art in turbulence research. The papers of the conference went through the usual reviewing process and the result is given in this book of Proceedings. In the present volume, the reader will find the keynote lectures followed by the contributed talks given in alphabetical order of the first author.
Der Sammelband enthalt Beitrage einer Tagung uber die Simulation von dreidimensionalen Flussigkeiten. Sie geben einen Uberblick uber den Stand des Wissens auf dem Gebiet der numerischen Simulation der Turbulenz, angewandt auf eine weite Spanne von Problemen wie Aerodynamik, Nicht-Newtonsche Flussigkeiten, Konvektion.This volume contains the material presented at the IMACS-COST Conference on CFD, Three-Dimensional Complex Flows, held in Lausanne (Switzerland), September 13 - 15, 1995. It gives an overview of the current state of numerical simulation and turbulence modelling applied to a wide range of fluid flow problems such as an example aerodynamics, non-Newtonian flows, transition, thermal convection."
Computing application to materials science is one of the fastest-growing research areas. This book introduces the concepts and methodologies related to the modeling of the complex phenomena occurring in materials processing. It is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics, and for engineering professionals or researchers.
The GAMM-Commi ttee for Numerical Methods in Fluid Mechanics (GAMM-Fachausschuss fur Numerische Methoden in der Stromungsmechanik) has sponsored the organization of a GAMM Workshop dedicated to the numerical simulation of three- dimensional incompressible unsteady viscous laminar flows to test Navier-Stokes solvers. The Workshop was held in Paris from June 12th to June 14th, 1991 at the Ecole Nationale Superieure des Arts et Metiers. Two test problems were set up. The first one is the flow in a driven-lid parallelepipedic cavity at Re = 3200 . The second problem is a flow around a prolate spheroid at incidence. These problems are challenging as fully transient solutions are expected to show up. The difficulties for meaningful calculations come from both space and temporal discretizations which have to be sufficiently accurate to resol ve detailed structures like Taylor-Gortler-like vortices and the appropriate time development. Several research teams from academia and industry tackled the tests using different formulations (veloci ty-pressure, vortici ty- velocity), different numerical methods (finite differences, finite volumes, finite elements), various solution algorithms (splitting, coupled, ...), various solvers (direct, iterative, semi-iterative) with preconditioners or other numerical speed-up procedures. The results show some scatter and achieve different levels of efficiency. The Workshop was attended by about 25 scientists and drove much interaction between the participants. The contributions in these proceedings are presented in alphabetical order according to the first author, first for the cavi ty problem and then for the prolate spheroid problem. No definite conclusions about benchmark solutions can be drawn.
Mathematical Modeling for Complex Fluids and Flows provides researchers and engineering practitioners encountering fluid flows with state-of-the-art knowledge in continuum concepts and associated fluid dynamics. In doing so it supplies the means to design mathematical models of these flows that adequately express the engineering physics involved. It exploits the implicit link between the turbulent flow of classical Newtonian fluids and the laminar and turbulent flow of non-Newtonian fluids such as those required in food processing and polymeric flows. The book develops a descriptive mathematical model articulated through continuum mechanics concepts for these non-Newtonian, viscoelastic fluids and turbulent flows. Each complex fluid and flow is examined in this continuum context as well as in combination with the turbulent flow of viscoelastic fluids. Some details are also explored via kinetic theory, especially viscoelastic fluids and their treatment with the Boltzmann equation. Both solution and modeling strategies for turbulent flows are laid out using continuum concepts, including a description of constructing polynomial representations and accounting for non-inertial and curvature effects. Ranging from fundamental concepts to practical methodology, and including discussion of emerging technologies, this book is ideal for those requiring a single-source assessment of current practice in this intricate yet vital field.
|
You may like...
Downton Abbey 2 - A New Era
Hugh Bonneville, Maggie Smith
Blu-ray disc
(1)
R141 Discovery Miles 1 410
|