![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
The theory of Kac lagebras and their duality, elaborated independently in the seventies by Kac and Vainermann and by the authors of this book, has nowreached a state of maturity which justifies the publication of a comprehensive and authoritative account in bookform. Further, the topic of "quantum groups" has recently become very fashionable and attracted the attention of more and more mathematicians and theoretical physicists. However a good characterization of quantum groups among Hopf algebras in analogy to the characterization of Lie groups among locally compact groups is still missing. It is thus very valuable to develop the generaltheory as does this book, with emphasis on the analytical aspects of the subject instead of the purely algebraic ones. While in the Pontrjagin duality theory of locally compact abelian groups a perfect symmetry exists between a group and its dual, this is no longer true in the various duality theorems of Tannaka, Krein, Stinespring and others dealing with non-abelian locally compact groups. Kac (1961) and Takesaki (1972) formulated the objective of finding a good category of Hopf algebras, containing the category of locally compact groups and fulfilling a perfect duality. The category of Kac algebras developed in this book fully answers the original duality problem, while not yet sufficiently non-unimodular to include quantum groups. This self-contained account of thetheory will be of interest to all researchers working in quantum groups, particularly those interested in the approach by Lie groups and Lie algebras or by non-commutative geometry, and more generally also to those working in C* algebras or theoretical physics.
This book deals with the theory of Kac algebras and their dual ity, elaborated independently by M. Enock and J . -M. Schwartz, and by G. !. Kac and L. !. Vajnermann in the seventies. The sub ject has now reached a state of maturity which fully justifies the publication of this book. Also, in recent times, the topic of "quantum groups" has become very fashionable and attracted the attention of more and more mathematicians and theoret ical physicists. One is still missing a good characterization of quantum groups among Hopf algebras, similar to the character ization of Lie groups among locally compact groups. It is thus extremely valuable to develop the general theory, as this book does, with emphasis on the analytical aspects of the subject instead of the purely algebraic ones. The original motivation of M. Enock and J. -M. Schwartz can be formulated as follows: while in the Pontrjagin duality theory of locally compact abelian groups a perfect symmetry exists between a group and its dual, this is no longer true in the various duality theorems of T. Tannaka, M. G. Krein, W. F. Stinespring . . . dealing with non abelian locally compact groups. The aim is then, in the line proposed by G. !. Kac in 1961 and M. Takesaki in 1972, to find a good category of Hopf algebras, containing the category of locally compact groups and fulfilling a perfect duality.
|
![]() ![]() You may like...
Recent Trends in Mathematical Modeling…
Vinai K. Singh, Yaroslav D. Sergeyev, …
Hardcover
R6,725
Discovery Miles 67 250
Recent Developments in Acoustics…
Mahavir Singh, Yasser Rafat
Hardcover
R7,132
Discovery Miles 71 320
Die Maan Is Swart - Gedigte Van Adam…
Adam Small, Ronelda Kamfer
Paperback
![]()
|