Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Non-standard finite element methods, in particular mixed methods, are central to many applications. In this text the authors, Boffi, Brezzi and Fortin present a general framework, starting with a finite dimensional presentation, then moving on to formulation in Hilbert spaces and finally considering approximations, including stabilized methods and eigenvalue problems. This book also provides an introduction to standard finite element approximations, followed by the construction of elements for the approximation of mixed formulations in H(div) and H(curl). The general theory is applied to some classical examples: Dirichlet's problem, Stokes' problem, plate problems, elasticity and electromagnetism.
This book focuses on iterative solvers and preconditioners for mixed finite element methods. It provides an overview of some of the state-of-the-art solvers for discrete systems with constraints such as those which arise from mixed formulations. Starting by recalling the basic theory of mixed finite element methods, the book goes on to discuss the augmented Lagrangian method and gives a summary of the standard iterative methods, describing their usage for mixed methods. Here, preconditioners are built from an approximate factorisation of the mixed system. A first set of applications is considered for incompressible elasticity problems and flow problems, including non-linear models. An account of the mixed formulation for Dirichlet's boundary conditions is then given before turning to contact problems, where contact between incompressible bodies leads to problems with two constraints. This book is aimed at graduate students and researchers in the field of numerical methods and scientific computing.
Research on non-standard finite element methods is evolving rapidly and in this text Brezzi and Fortin give a general framework in which the development is taking place. The presentation is built around a few classic examples: Dirichlet's problem, Stokes problem, Linear elasticity. The authors provide with this publication an analysis of the methods in order to understand their properties as thoroughly as possible.
Since the early 70's, mixed finite elements have been the object of a wide and deep study by the mathematical and engineering communities. The fundamental role of this method for many application fields has been worldwide recognized and its use has been introduced in several commercial codes. An important feature of mixed finite elements is the interplay between theory and application. Discretization spaces for mixed schemes require suitable compatibilities, so that simple minded approximations generally do not work and the design of appropriate stabilizations gives rise to challenging mathematical problems. This volume collects the lecture notes of a C.I.M.E. course held in Summer 2006, when some of the most world recognized experts in the field reviewed the rigorous setting of mixed finite elements and revisited it after more than 30 years of practice. Applications, in this volume, range from traditional ones, like fluid-dynamics or elasticity, to more recent and active fields, like electromagnetism.
|
You may like...
Rights To Land - A Guide To Tenure…
William Beinart, Peter Delius, …
Paperback
(1)
Elgar Encyclopedia of European Union…
Paolo R Graziano, Jale Tosun
Hardcover
R7,418
Discovery Miles 74 180
Women In Solitary - Inside The Female…
Shanthini Naidoo
Paperback
(1)
|