Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 11 of 11 matches in All Departments
The material and references in this extended second edition of "The Topology of Torus Actions on Symplectic Manifolds," published as Volume 93 in this series in 1991, have been updated. Symplectic manifolds and torus actions are investigated, with numerous examples of torus actions, for instance on some moduli spaces. Although the book is still centered on convexity results, it contains much more material, in particular lots of new examples and exercises.
The school, the book This book is based on lectures given by the authors of the various chapters in a three week long CIMPA summer school, held in Sophia-Antipolis (near Nice) in July 1992. The first week was devoted to the basics of symplectic and Riemannian geometry (Banyaga, Audin, Lafontaine, Gauduchon), the second was the technical one (Pansu, Muller, Duval, Lalonde and Sikorav). The final week saw the conclusion ofthe school (mainly McDuffand Polterovich, with complementary lectures by Lafontaine, Audin and Sikorav). Globally, the chapters here reflect what happened there. Locally, we have tried to reorganise some ofthe material to make the book more coherent. Hence, for instance, the collective (Audin, Lalonde, Polterovich) chapter on Lagrangian submanifolds and the appendices added to some of the chapters. Duval was not able to write up his lectures, so that genuine complex analysis will not appear in the book, although it is a very current tool in symplectic and contact geometry (and conversely). Hamiltonian systems and variational methods were the subject of some of Sikorav's talks, which he also was not able to write up. On the other hand, F. Labourie, who could not be at the school, wrote a chapter on pseudo-holomorphic curves in Riemannian geometry.
Sofia Kovalevskaya was a brilliant and determined young Russian woman of the 19th century who wanted to become a mathematician and who succeeded, in often difficult circumstances, in becoming arguably the first woman to have a professional university career in the way we understand it today. This memoir, written by a mathematician who specialises in symplectic geometry and integrable systems, is a personal exploration of the life, the writings and the mathematical achievements of a remarkable woman. It emphasises the originality of Kovalevskaya's work and assesses her legacy and reputation as a mathematician and scientist. Her ideas are explained in a way that is accessible to a general audience, with diagrams, marginal notes and commentary to help explain the mathematical concepts and provide context. This fascinating book, which also examines Kovalevskaya's love of literature, will be of interest to historians looking for a treatment of the mathematics, and those doing feminist or gender studies.
Sofia Kovalevskaya was a brilliant and determined young Russian woman of the 19th century who wanted to become a mathematician and who succeeded, in often difficult circumstances, in becoming arguably the first woman to have a professional university career in the way we understand it today. This memoir, written by a mathematician who specialises in symplectic geometry and integrable systems, is a personal exploration of the life, the writings and the mathematical achievements of a remarkable woman. It emphasises the originality of Kovalevskaya's work and assesses her legacy and reputation as a mathematician and scientist. Her ideas are explained in a way that is accessible to a general audience, with diagrams, marginal notes and commentary to help explain the mathematical concepts and provide context. This fascinating book, which also examines Kovalevskaya's love of literature, will be of interest to historians looking for a treatment of the mathematics, and those doing feminist or gender studies.
This book is an introduction to modern methods of symplectic topology. It is devoted to explaining the solution of an important problem originating from classical mechanics: the 'Arnold conjecture', which asserts that the number of 1-periodic trajectories of a non-degenerate Hamiltonian system is bounded below by the dimension of the homology of the underlying manifold. The first part is a thorough introduction to Morse theory, a fundamental tool of differential topology. It defines the Morse complex and the Morse homology, and develops some of their applications. Morse homology also serves a simple model for Floer homology, which is covered in the second part. Floer homology is an infinite-dimensional analogue of Morse homology. Its involvement has been crucial in the recent achievements in symplectic geometry and in particular in the proof of the Arnold conjecture. The building blocks of Floer homology are more intricate and imply the use of more sophisticated analytical methods, all of which are explained in this second part. The three appendices present a few prerequisites in differential geometry, algebraic topology and analysis. The book originated in a graduate course given at Strasbourg University, and contains a large range of figures and exercises. Morse Theory and Floer Homology will be particularly helpful for graduate and postgraduate students.
The material and references in this extended second edition of "The Topology of Torus Actions on Symplectic Manifolds," published as Volume 93 in this series in 1991, have been updated. Symplectic manifolds and torus actions are investigated, with numerous examples of torus actions, for instance on some moduli spaces. Although the book is still centered on convexity results, it contains much more material, in particular lots of new examples and exercises.
Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book).
Geometry, this very ancient field of study of mathematics, frequently remains too little familiar to students. Michle Audin, professor at the University of Strasbourg, has written a book allowing them to remedy this situation and, starting from linear algebra, extend their knowledge of affine, Euclidean and projective geometry, conic sections and quadrics, curves and surfaces. It includes many nice theorems like the nine-point circle, Feuerbach's theorem, and so on. Everything is presented clearly and rigourously. Each property is proved, examples and exercises illustrate the course content perfectly. Precise hints for most of the exercises are provided at the end of the book. This very comprehensive text is addressed to students at upper undergraduate and Master's level to discover geometry and deepen their knowledge and understanding.
The school, the book This book is based on lectures given by the authors of the various chapters in a three week long CIMPA summer school, held in Sophia-Antipolis (near Nice) in July 1992. The first week was devoted to the basics of symplectic and Riemannian geometry (Banyaga, Audin, Lafontaine, Gauduchon), the second was the technical one (Pansu, Muller, Duval, Lalonde and Sikorav). The final week saw the conclusion ofthe school (mainly McDuffand Polterovich, with complementary lectures by Lafontaine, Audin and Sikorav). Globally, the chapters here reflect what happened there. Locally, we have tried to reorganise some ofthe material to make the book more coherent. Hence, for instance, the collective (Audin, Lalonde, Polterovich) chapter on Lagrangian submanifolds and the appendices added to some of the chapters. Duval was not able to write up his lectures, so that genuine complex analysis will not appear in the book, although it is a very current tool in symplectic and contact geometry (and conversely). Hamiltonian systems and variational methods were the subject of some of Sikorav's talks, which he also was not able to write up. On the other hand, F. Labourie, who could not be at the school, wrote a chapter on pseudo-holomorphic curves in Riemannian geometry.
How did Pierre Fatou and Gaston Julia create what we now call Complex Dynamics, in the context of the early twentieth century and especially of the First World War? The book is based partly on new, unpublished sources. Who were Pierre Fatou, Gaston Julia, Paul Montel? New biographical information is given on the little known mathematician that was Pierre Fatou. How did the injury of Julia during WW1 influence mathematical life in France? From the reviews of the French version: "Audin's book is ! filled with marvelous biographical information and analysis, dealing not just with the men mentioned in the book's title but a large number of other players, too ! [It] addresses itself to scholars for whom the history of mathematics has a particular resonance and especially to mathematicians active, or even with merely an interest, in complex dynamics. ! presents it all to the reader in a very appealing form." (Michael Berg, The Mathematical Association of America, October, 2009)
|
You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|