0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Quantum Dynamic Imaging - Theoretical and Numerical Methods (Hardcover, 2011 ed.): Andre D. Bandrauk, Misha Ivanov Quantum Dynamic Imaging - Theoretical and Numerical Methods (Hardcover, 2011 ed.)
Andre D. Bandrauk, Misha Ivanov
R2,892 Discovery Miles 28 920 Ships in 10 - 15 working days

Studying and using light or "photons" to image and then to control and transmit molecular information is among the most challenging and significant research fields to emerge in recent years. One of the fastest growing areas involves research in the temporal imaging of quantum phenomena, ranging from molecular dynamics in the femto (10-15s) time regime for atomic motion to the atto (10-18s) time scale of electron motion. In fact, the attosecond "revolution" is now recognized as one of the most important recent breakthroughs and innovations in the science of the 21st century. A major participant in the development of ultrafast femto and attosecond temporal imaging of molecular quantum phenomena has been theory and numerical simulation of the nonlinear, non-perturbative response of atoms and molecules to ultrashort laser pulses. Therefore, imaging quantum dynamics is a new frontier of science requiring advanced mathematical approaches for analyzing and solving spatial and temporal multidimensional partial differential equations such as Time-Dependent Schroedinger Equations (TDSE) andTime-Dependent Dirac equations (TDDEs for relativistic phenomena). These equations are also coupled to the photons in Maxwell's equations for collective propagation effects. Inversion of the experimental imaging data of quantum dynamics presents new mathematical challenges in the imaging of quantum wave coherences on subatomic (subnanometer) spatial dimensions and multiple timescales from atto to femto and even nanoseconds.In "Quantum Dynamic Imaging: Theoretical and Numerical Methods," leading researchers discuss these exciting state-of-the-art developments and theirimplications for R&D in view of the promise of quantum dynamic imagingscience as the essential tool for controlling matter at the molecular level."

Quantum Dynamic Imaging - Theoretical and Numerical Methods (Paperback, Softcover reprint of the original 1st ed. 2011): Andre... Quantum Dynamic Imaging - Theoretical and Numerical Methods (Paperback, Softcover reprint of the original 1st ed. 2011)
Andre D. Bandrauk, Misha Ivanov
R2,888 Discovery Miles 28 880 Ships in 10 - 15 working days

Studying and using light or "photons" to image and then to control and transmit molecular information is among the most challenging and significant research fields to emerge in recent years. One of the fastest growing areas involves research in the temporal imaging of quantum phenomena, ranging from molecular dynamics in the femto (10-15s) time regime for atomic motion to the atto (10-18s) time scale of electron motion. In fact, the attosecond "revolution" is now recognized as one of the most important recent breakthroughs and innovations in the science of the 21st century. A major participant in the development of ultrafast femto and attosecond temporal imaging of molecular quantum phenomena has been theory and numerical simulation of the nonlinear, non-perturbative response of atoms and molecules to ultrashort laser pulses. Therefore, imaging quantum dynamics is a new frontier of science requiring advanced mathematical approaches for analyzing and solving spatial and temporal multidimensional partial differential equations such as Time-Dependent Schroedinger Equations (TDSE) and Time-Dependent Dirac equations (TDDEs for relativistic phenomena). These equations are also coupled to the photons in Maxwell's equations for collective propagation effects. Inversion of the experimental imaging data of quantum dynamics presents new mathematical challenges in the imaging of quantum wave coherences on subatomic (subnanometer) spatial dimensions and multiple timescales from atto to femto and even nanoseconds. In Quantum Dynamic Imaging: Theoretical and Numerical Methods, leading researchers discuss these exciting state-of-the-art developments and their implications for R&D in view of the promise of quantum dynamic imaging science as the essential tool for controlling matter at the molecular level.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Captain America
Jack Kirby, Joe Simon, … Paperback R791 R685 Discovery Miles 6 850
The New Nomads - How The Migration…
Felix Marquardt Paperback  (1)
R330 R194 Discovery Miles 1 940
Dentition - According to Some of the…
Alexander Christian Becker Paperback R398 Discovery Miles 3 980
The World of Women's Trade Unionism…
Norbert C. Soldon Hardcover R2,798 Discovery Miles 27 980
Mathematical Introduction To General…
Amol Sasane Hardcover R4,133 Discovery Miles 41 330
The Vision of Peace - Or, Thoughts in…
William John Edge Paperback R357 Discovery Miles 3 570
All Bullshit and Lies? - Insincerity…
Chris Heffer Hardcover R2,601 Discovery Miles 26 010
The Archaeology of Israel - Constructing…
Neil Asher Silberman, David B. Small Hardcover R6,280 Discovery Miles 62 800
Bounds Of Possibility - The Legacy Of…
Barney Pityana, Mamphela Ramphele, … Paperback R509 Discovery Miles 5 090
Hadrian's Wall - Creating Division
Matthew Symonds Hardcover R2,693 Discovery Miles 26 930

 

Partners