Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
To be able to compete successfully both at national and international levels, production systems and equipment must perform at levels not even thinkable a decade ago. Requirements for increased product quality, reduced throughput time and enhanced operating effectiveness within a rapidly changing customer demand environment continue to demand a high maintenance performance. In some cases, maintenance is required to increase operational effectiveness and revenues and customer satisfaction while reducing capital, operating and support costs. This may be the largest challenge facing production enterprises these days. For this, maintenance strategy is required to be aligned with the production logistics and also to keep updated with the current best practices. Maintenance has become a multidisciplinary activity and one may come across situations in which maintenance is the responsibility of people whose training is not engineering. This handbook aims to assist at different levels of understanding whether the manager is an engineer, a production manager, an experienced maintenance practitioner or a beginner. Topics selected to be included in this handbook cover a wide range of issues in the area of maintenance management and engineering to cater for all those interested in maintenance whether practitioners or researchers. This handbook is divided into 6 parts and contains 26 chapters covering a wide range of topics related to maintenance management and engineering.
Production planning, inventory management, quality control, and maintenance policy are critical components of the manufacturing system. The effective integration of these four components gives a manufacturing operation the competitive edge in today's global market place. Integrated Models in Production Planning, Inventory, Quality, and Maintenance provides, in one volume, the latest developments in the integration of production, quality, and maintenance models. Prominent researchers, who are actively engaged in these areas, have contributed the topical chapters focused on the most recent issues in the area. In Part I, Ben-Daya and Rahim provide an overview of the literature dealing with integrated models for production, quality, and maintenance. Directions for future research are outlined. Part II contains six chapters (chapters 2 to 6) dealing with integrated models for production and maintenance. Part III deals with integrated production/inventory and quality models in chapters 7-11. Part IV focuses on quality and maintenance integrated models and contains two chapters. Part V deals with warranty, manufacturing, and quality and contains two chapters. Part VI addresses issues related to quality and contains three chapters (chapters 16-18).
Production costs are being reduced by automation, robotics, computer-integrated manufacturing, cost reduction studies and more. These new technologies are expensive to buy, repair, and maintain. Hence, the demand on maintenance is growing and its costs are escalating. This new environment is compelling industrial maintenance organizations to make the transition from fixing broken machines to higher-level business units for securing production capacity. On the academic front, research in the area of maintenance management and engineering is receiving tremendous interest from researchers. Many papers have appeared in the literature dealing with the modeling and solution of maintenance problems using operations research (OR) and management science (MS) techniques. This area represents an opportunity for making significant contributions by the OR and MS communities. Maintenance, Modeling, and Optimization provides in one volume the latest developments in the area of maintenance modeling. Prominent scholars have contributed chapters covering a wide range of topics. We hope that this initial contribution will serve as a useful informative introduction to this field that may permit additional developments and useful directions for more research in this fast-growing area. The book is divided into six parts and contains seventeen chapters. Each chapter has been subject to review by at least two experts in the area of maintenance modeling and optimization. The first chapter provides an introduction to major maintenance modeling areas illustrated with some basic models. Part II contains five chapters dealing with maintenance planning and scheduling. Part III deals with preventive maintenance in six chapters. Part IV focuses on condition-based maintenance and contains two chapters. Part V deals with integrated production and maintenance models and contains two chapters. Part VI addresses issues related to maintenance and new technologies, and also deals with Just-in-Time (JIT) and Maintenance.
To be able to compete successfully both at national and international levels, production systems and equipment must perform at levels not even thinkable a decade ago. Requirements for increased product quality, reduced throughput time and enhanced operating effectiveness within a rapidly changing customer demand environment continue to demand a high maintenance performance. In some cases, maintenance is required to increase operational effectiveness and revenues and customer satisfaction while reducing capital, operating and support costs. This may be the largest challenge facing production enterprises these days. For this, maintenance strategy is required to be aligned with the production logistics and also to keep updated with the current best practices. Maintenance has become a multidisciplinary activity and one may come across situations in which maintenance is the responsibility of people whose training is not engineering. This handbook aims to assist at different levels of understanding whether the manager is an engineer, a production manager, an experienced maintenance practitioner or a beginner. Topics selected to be included in this handbook cover a wide range of issues in the area of maintenance management and engineering to cater for all those interested in maintenance whether practitioners or researchers. This handbook is divided into 6 parts and contains 26 chapters covering a wide range of topics related to maintenance management and engineering.
Production planning, inventory management, quality control, and maintenance policy are critical components of the manufacturing system. The effective integration of these four components gives a manufacturing operation the competitive edge in today's global market place. Integrated Models in Production Planning, Inventory, Quality, and Maintenance provides, in one volume, the latest developments in the integration of production, quality, and maintenance models. Prominent researchers, who are actively engaged in these areas, have contributed the topical chapters focused on the most recent issues in the area. In Part I, Ben-Daya and Rahim provide an overview of the literature dealing with integrated models for production, quality, and maintenance. Directions for future research are outlined. Part II contains six chapters (chapters 2 to 6) dealing with integrated models for production and maintenance. Part III deals with integrated production/inventory and quality models in chapters 7-11. Part IV focuses on quality and maintenance integrated models and contains two chapters. Part V deals with warranty, manufacturing, and quality and contains two chapters. Part VI addresses issues related to quality and contains three chapters (chapters 16-18).
Production costs are being reduced by automation, robotics, computer-integrated manufacturing, cost reduction studies and more. These new technologies are expensive to buy, repair, and maintain. Hence, the demand on maintenance is growing and its costs are escalating. This new environment is compelling industrial maintenance organizations to make the transition from fixing broken machines to higher-level business units for securing production capacity. On the academic front, research in the area of maintenance management and engineering is receiving tremendous interest from researchers. Many papers have appeared in the literature dealing with the modeling and solution of maintenance problems using operations research (OR) and management science (MS) techniques. This area represents an opportunity for making significant contributions by the OR and MS communities. Maintenance, Modeling, and Optimization provides in one volume the latest developments in the area of maintenance modeling. Prominent scholars have contributed chapters covering a wide range of topics. We hope that this initial contribution will serve as a useful informative introduction to this field that may permit additional developments and useful directions for more research in this fast-growing area. The book is divided into six parts and contains seventeen chapters. Each chapter has been subject to review by at least two experts in the area of maintenance modeling and optimization. The first chapter provides an introduction to major maintenance modeling areas illustrated with some basic models. Part II contains five chapters dealing with maintenance planning and scheduling. Part III deals with preventive maintenance in six chapters. Part IV focuses on condition-based maintenance and contains two chapters. Part V deals with integrated production and maintenance models and contains two chapters. Part VI addresses issues related to maintenance and new technologies, and also deals with Just-in-Time (JIT) and Maintenance.
|
You may like...
|