Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book serves as a current resource for Photoplethysmogram (PPG) signal analysis using MATLAB®. This technology is critical in the evaluation of medical and diagnostic data utilized in mobile devices. Information and methodologies outlined in the text can be used to learn the empirical and experimental process (including data collection, data analysis, feature extractions, and more) from inception to conclusion. This book also discusses how introduced methodologies can be used and applied as tools that will teach the user how to validate, test, and simulate developed algorithms before implementing and deploying the algorithms on wearable, battery-driven, or point-of-care devices.
This book serves as a current resource for Photoplethysmogram (PPG) signal analysis using MATLAB (R). This technology is critical in the evaluation of medical and diagnostic data utilized in mobile devices. Information and methodologies outlined in the text can be used to learn the empirical and experimental process (including data collection, data analysis, feature extractions, and more) from inception to conclusion. This book also discusses how introduced methodologies can be used and applied as tools that will teach the user how to validate, test, and simulate developed algorithms before implementing and deploying the algorithms on wearable, battery-driven, or point-of-care devices.
How does the computer learn to understand what it sees? Deep Learning for Vision Systems answers that by applying deep learning to computer vision. Using only high school algebra, this book illuminates the concepts behind visual intuition. You'll understand how to use deep learning architectures to build vision system applications for image generation and facial recognition. Summary Computer vision is central to many leading-edge innovations, including self-driving cars, drones, augmented reality, facial recognition, and much, much more. Amazing new computer vision applications are developed every day, thanks to rapid advances in AI and deep learning (DL). Deep Learning for Vision Systems teaches you the concepts and tools for building intelligent, scalable computer vision systems that can identify and react to objects in images, videos, and real life. With author Mohamed Elgendy's expert instruction and illustration of real-world projects, you'll finally grok state-of-the-art deep learning techniques, so you can build, contribute to, and lead in the exciting realm of computer vision! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology How much has computer vision advanced? One ride in a Tesla is the only answer you'll need. Deep learning techniques have led to exciting breakthroughs in facial recognition, interactive simulations, and medical imaging, but nothing beats seeing a car respond to real-world stimuli while speeding down the highway. About the book How does the computer learn to understand what it sees? Deep Learning for Vision Systems answers that by applying deep learning to computer vision. Using only high school algebra, this book illuminates the concepts behind visual intuition. You'll understand how to use deep learning architectures to build vision system applications for image generation and facial recognition. What's inside Image classification and object detection Advanced deep learning architectures Transfer learning and generative adversarial networks DeepDream and neural style transfer Visual embeddings and image search About the reader For intermediate Python programmers. About the author Mohamed Elgendy is the VP of Engineering at Rakuten. A seasoned AI expert, he has previously built and managed AI products at Amazon and Twilio. Table of Contents PART 1 - DEEP LEARNING FOUNDATION 1 Welcome to computer vision 2 Deep learning and neural networks 3 Convolutional neural networks 4 Structuring DL projects and hyperparameter tuning PART 2 - IMAGE CLASSIFICATION AND DETECTION 5 Advanced CNN architectures 6 Transfer learning 7 Object detection with R-CNN, SSD, and YOLO PART 3 - GENERATIVE MODELS AND VISUAL EMBEDDINGS 8 Generative adversarial networks (GANs) 9 DeepDream and neural style transfer 10 Visual embeddings
|
You may like...
Snyman's Criminal Law
Kallie Snyman, Shannon Vaughn Hoctor
Paperback
|