![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
In today's digital world, the huge amount of data being generated is unstructured, messy, and chaotic in nature. Dealing with such data, and attempting to unfold the meaningful information, can be a challenging task. Feature engineering is a process to transform such data into a suitable form that better assists with interpretation and visualization. Through this method, the transformed data is more transparent to the machine learning models, which in turn causes better prediction and analysis of results. Data science is crucial for the data scientist to assess the trade-offs of their decisions regarding the effectiveness of the machine learning model implemented. Investigating the demand in this area today and in the future is a necessity. The Handbook of Research on Automated Feature Engineering and Advanced Applications in Data Science provides an in-depth analysis on both the theoretical and the latest empirical research findings on how features can be extracted and transformed from raw data. The chapters will introduce feature engineering and the recent concepts, methods, and applications with the use of various data types, as well as examine the latest machine learning applications on the data. While highlighting topics such as detection, tracking, selection techniques, and prediction models using data science, this book is ideally intended for research scholars, big data scientists, project developers, data analysts, and computer scientists along with practitioners, researchers, academicians, and students interested in feature engineering and its impact on data.
With the proliferation of social media and on-line communities in networked world a large gamut of data has been collected and stored in databases. The rate at which such data is stored is growing at a phenomenal rate and pushing the classical methods of data analysis to their limits. This book presents an integrated framework of recent empirical and theoretical research on social network analysis based on a wide range of techniques from various disciplines like data mining, social sciences, mathematics, statistics, physics, network science, machine learning with visualization techniques and security. The book illustrates the potential of multi-disciplinary techniques in various real life problems and intends to motivate researchers in social network analysis to design more effective tools by integrating swarm intelligence and data mining.
The aim of this book is to understand the state-of-the-art theoretical and practical advances of swarm intelligence. It comprises seven contemporary relevant chapters. In chapter 1, a review of Bacteria Foraging Optimization (BFO) techniques for both single and multiple criterions problem is presented. A survey on swarm intelligence for multiple and many objectives optimization is presented in chapter 2 along with a topical study on EEG signal analysis. Without compromising the extensive simulation study, a comparative study of variants of MOPSO is provided in chapter 3. Intractable problems like subset and job scheduling problems are discussed in chapters 4 and 7 by different hybrid swarm intelligence techniques. An attempt to study image enhancement by ant colony optimization is made in chapter 5. Finally, chapter 7 covers the aspect of uncertainty in data by hybrid PSO.
This book highlights recent research on bio-inspired computing and its various innovative applications in information and communication technologies. It presents 38 high-quality papers from the 10th International Conference on Innovations in Bio-Inspired Computing and Applications (IBICA 2019) and 9th World Congress on Information and Communication Technologies (WICT 2019), which was held at GIET University, Gunupur, India, on December 16-18, 2019. As a premier conference, IBICA-WICT brings together researchers, engineers and practitioners whose work involves bio-inspired computing, computational intelligence and their applications in information security, real-world contexts, etc. Including contributions by authors from 18 countries, the book offers a valuable reference guide for all researchers, students and practitioners in the fields of Computer Science and Engineering.
With the proliferation of social media and on-line communities in networked world a large gamut of data has been collected and stored in databases. The rate at which such data is stored is growing at a phenomenal rate and pushing the classical methods of data analysis to their limits. This book presents an integrated framework of recent empirical and theoretical research on social network analysis based on a wide range of techniques from various disciplines like data mining, social sciences, mathematics, statistics, physics, network science, machine learning with visualization techniques and security. The book illustrates the potential of multi-disciplinary techniques in various real life problems and intends to motivate researchers in social network analysis to design more effective tools by integrating swarm intelligence and data mining.
The aim of this book is to understand the state-of-the-art theoretical and practical advances of swarm intelligence. It comprises seven contemporary relevant chapters. In chapter 1, a review of Bacteria Foraging Optimization (BFO) techniques for both single and multiple criterions problem is presented. A survey on swarm intelligence for multiple and many objectives optimization is presented in chapter 2 along with a topical study on EEG signal analysis. Without compromising the extensive simulation study, a comparative study of variants of MOPSO is provided in chapter 3. Intractable problems like subset and job scheduling problems are discussed in chapters 4 and 7 by different hybrid swarm intelligence techniques. An attempt to study image enhancement by ant colony optimization is made in chapter 5. Finally, chapter 7 covers the aspect of uncertainty in data by hybrid PSO.      Â
This book contains the papers presented at the First International Conference on Innovations in Intelligent Computing and Communication, ICIICC 2021, held in Bhubaneswar, Odisha, India, in December, 2022. The 31 full papers presented were thoroughly reviewed and selected from 78 submissions. They are divided in three tracks with the following topics: Intelligent Computing; Communications; and Machine Learning and Data Analytics.
|
![]() ![]() You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|