Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
The theory of stochastic processes, for science and engineering, can be considered as an extension of probability theory allowing modeling of the evolution of systems over time. The modern theory of Markov processes has its origins in the studies of A.A. Markov (1856-1922) on sequences of experiments "connected in a chain" and in the attempts to describe mathematically the physical phenomenon Brownian motion. The theory of stochastic processes entered in a period of intensive development when the idea of Markov property was brought in. This book is a modern overall view of semi-Markov processes and its applications in reliability. It is accessible to readers with a first course in Probability theory (including the basic notions of Markov chain). The text contains many examples which aid in the understanding of the theoretical notions and shows how to apply them to concrete physical situations including algorithmic simulations. Many examples of the concrete applications in reliability are given. Features: * Processes associated to semi-Markov kernel for general and discrete state spaces * Asymptotic theory of processes and of additive functionals * Statistical estimation of semi-Markov kernel and of reliability function * Monte Carlo simulation * Applications in reliability and maintenance The book is a valuable resource for understanding the latest developments in Semi-Markov Processes and reliability. Practitioners, researchers and professionals in applied mathematics, control and engineering who work in areas of reliability, lifetime data analysis, statistics, probability, and engineering will find this book an up-to-date overview of the field.
The theory of stochastic processes, for science and engineering, can be considered as an extension of probability theory allowing modeling of the evolution of systems over time. The modern theory of Markov processes has its origins in the studies of A.A. Markov (1856-1922) on sequences of experiments connected in a chain and in the attempts to describe mathematically the physical phenomenon Brownian motion. The theory of stochastic processes entered in a period of intensive development when the idea of Markov property was brought in. This book is a modern overall view of semi-Markov processes and its applications in reliability. It is accessible to readers with a first course in Probability theory (including the basic notions of Markov chain). The text contains many examples which aid in the understanding of the theoretical notions and shows how to apply them to concrete physical situations including algorithmic simulations. Many examples of the concrete applications in reliability are given.Features: * Processes associated to semi-Markov kernel for general and discrete state spaces * Asymptotic theory of processes and of additive functionals * Statistical estimation of semi-Markov kernel and of reliability function * Monte Carlo simulation * Applications in reliability and maintenance The book is a valuable resource for understanding the latest developments in Semi-Markov Processes and reliability. Practitioners, researchers and professionals in applied mathematics, control and engineering who work in areas of reliability, lifetime data analysis, statistics, probability, and engineering will find this book an up-to-date overview of the field.
This book presents thirty-one extensive and carefully edited chapters providing an up-to-date survey of new models and methods for reliability analysis and applications in science, engineering, and technology. The chapters contain broad coverage of the latest developments and innovative techniques in a wide range of theoretical and numerical issues in the field of statistical and probabilistic methods in reliability.
Fault tree analysis is an important technique in determining the
safety and dependability of complex systems. Fault trees are used
as a major tool in the study of system safety as well as in
reliability and availability studies.
The study of earthquakes is a multidisciplinary field, an amalgam of geodynamics, mathematics, engineering and more. The overriding commonality between them all is the presence of natural randomness. Stochastic studies (probability, stochastic processes and statistics) can be of different types, for example, the black box approach (one state), the white box approach (multi-state), the simulation of different aspects, and so on. This book has the advantage of bringing together a group of international authors, known for their earthquake-specific approaches, to cover a wide array of these myriad aspects. A variety of topics are presented, including statistical nonparametric and parametric methods, a multi-state system approach, earthquake simulators, post-seismic activity models, time series Markov models with regression, scaling properties and multifractal approaches, selfcorrecting models, the linked stress release model, Markovian arrival models, Poisson-based detection techniques, change point detection techniques on seismicity models, and, finally, semi-Markov models for earthquake forecasting.
|
You may like...
Gangster - Ware Verhale Van Albei Kante…
Carla van der Spuy
Paperback
Freedom - Stories Celebrating the…
Amnesty International USA
Paperback
Democracy Works - Re-Wiring Politics To…
Greg Mills, Olusegun Obasanjo, …
Paperback
|