Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
The book contains a consistent and sufficiently comprehensive theory of smooth functions and maps insofar as it is connected with differential calculus. The scope of notions includes, among others, Lagrange inequality, Taylor's formula, finding absolute and relative extrema, theorems on smoothness of the inverse map and on conditions of local invertibility, implicit function theorem, dependence and independence of functions, classification of smooth functions up to diffeomorphism. The concluding chapter deals with a more specific issue of critical values of smooth mappings. In several chapters, a relatively new technical approach is used that allows the authors to clarify and simplify some of the technically difficult proofs while maintaining full integrity. Besides, the book includes complete proofs of some important results which until now have only been published in scholarly literature or scientific journals (remainder estimates of Taylor's formula in a nonconvex area (Chapter I, 8), Whitney's extension theorem for smooth function (Chapter I, 11) and some of its corollaries, global diffeomorphism theorem (Chapter II, 5), results on sets of critical values of smooth mappings and the related Whitney example (Chapter IV). The text features multiple examples illustrating the results obtained and demonstrating their accuracy. Moreover, the book contains over 150 problems and 19 illustrations. Perusal of the book equips the reader to further explore any literature basing upon multivariable calculus.
This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well. The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford, was that curves with only mild singularities form smooth compact moduli spaces. An unexpected byproduct of this discovery was the realization that the analysis of more complex curve singularities is not a necessary step in understanding the geometry of the moduli spaces. The book does not use the sophisticated machinery of modern algebraic geometry, and most classical objects related to curves - such as Jacobian, space of holomorphic differentials, the Riemann-Roch theorem, and Weierstrass points - are treated at a basic level that does not require a profound command of algebraic geometry, but which is sufficient for extending them to vector bundles and other geometric objects associated to moduli spaces. Nevertheless, it offers clear information on the construction of the moduli spaces, and provides readers with tools for practical operations with this notion. Based on several lecture courses given by the authors at the Independent University of Moscow and Higher School of Economics, the book also includes a wealth of problems, making it suitable not only for individual research, but also as a textbook for undergraduate and graduate coursework
This book is devoted to classical and modern achievements in complex analysis. In order to benefit most from it, a first-year university background is sufficient; all other statements and proofs are provided. We begin with a brief but fairly complete course on the theory of holomorphic, meromorphic, and harmonic functions. We then present a uniformization theory, and discuss a representation of the moduli space of Riemann surfaces of a fixed topological type as a factor space of a contracted space by a discrete group. Next, we consider compact Riemann surfaces and prove the classical theorems of Riemann-Roch, Abel, Weierstrass, etc. We also construct theta functions that are very important for a range of applications. After that, we turn to modern applications of this theory. First, we build the (important for mathematics and mathematical physics) Kadomtsev-Petviashvili hierarchy and use validated results to arrive at important solutions to these differential equations. We subsequently use the theory of harmonic functions and the theory of differential hierarchies to explicitly construct a conformal mapping that translates an arbitrary contractible domain into a standard disk - a classical problem that has important applications in hydrodynamics, gas dynamics, etc. The book is based on numerous lecture courses given by the author at the Independent University of Moscow and at the Mathematics Department of the Higher School of Economics.
The book contains a consistent and sufficiently comprehensive theory of smooth functions and maps insofar as it is connected with differential calculus. The scope of notions includes, among others, Lagrange inequality, Taylor's formula, finding absolute and relative extrema, theorems on smoothness of the inverse map and on conditions of local invertibility, implicit function theorem, dependence and independence of functions, classification of smooth functions up to diffeomorphism. The concluding chapter deals with a more specific issue of critical values of smooth mappings. In several chapters, a relatively new technical approach is used that allows the authors to clarify and simplify some of the technically difficult proofs while maintaining full integrity. Besides, the book includes complete proofs of some important results which until now have only been published in scholarly literature or scientific journals (remainder estimates of Taylor's formula in a nonconvex area (Chapter I, 8), Whitney's extension theorem for smooth function (Chapter I, 11) and some of its corollaries, global diffeomorphism theorem (Chapter II, 5), results on sets of critical values of smooth mappings and the related Whitney example (Chapter IV). The text features multiple examples illustrating the results obtained and demonstrating their accuracy. Moreover, the book contains over 150 problems and 19 illustrations. Perusal of the book equips the reader to further explore any literature basing upon multivariable calculus.
This book is devoted to classical and modern achievements in complex analysis. In order to benefit most from it, a first-year university background is sufficient; all other statements and proofs are provided. We begin with a brief but fairly complete course on the theory of holomorphic, meromorphic, and harmonic functions. We then present a uniformization theory, and discuss a representation of the moduli space of Riemann surfaces of a fixed topological type as a factor space of a contracted space by a discrete group. Next, we consider compact Riemann surfaces and prove the classical theorems of Riemann-Roch, Abel, Weierstrass, etc. We also construct theta functions that are very important for a range of applications. After that, we turn to modern applications of this theory. First, we build the (important for mathematics and mathematical physics) Kadomtsev-Petviashvili hierarchy and use validated results to arrive at important solutions to these differential equations. We subsequently use the theory of harmonic functions and the theory of differential hierarchies to explicitly construct a conformal mapping that translates an arbitrary contractible domain into a standard disk - a classical problem that has important applications in hydrodynamics, gas dynamics, etc. The book is based on numerous lecture courses given by the author at the Independent University of Moscow and at the Mathematics Department of the Higher School of Economics.
|
You may like...
Fantastic Beasts And Where To Find Them…
J. K. Rowling
Hardcover
(3)
|