Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
The contributions in this book address both the kinetic approach one using the Boltzmann equation for dissipative gases as well as the less established hydrodynamic description. The last part of the book is devoted to driven granular gases and their analogy with molecular fluids.
Kinetic Theory of granular Gases provides an introduction to the rapidly developing theory of dissipative gas dynamics as it has been developed mainly during the past decade. The book is aimed at readers from the advanced undergraduate level onwards and leads up to the present state of research. The text is self-contained, in the sense that no mathematical or physical knowledge is required that goes beyond standard undergraduate physics courses. The material is adequate for a one-semester course and contains chapter summaries as well as exercises with detailed solutions. Special emphasis is put on a microscopically consistent description of pairwise particle collisions which leads to an impact-velocity dependent coefficient of restitution. The description of the many-particle system, based on the Boltzmann equation, starts with the derivation of the velocity distribution function, followed by the investigation of self-diffusion and Brownian motion. Using hydrodynamical methods, transport processes and self-organized structure formulation are studies. An appendix gives a brief introduction to event-driven molecular dynamics. A second appendix describes a novel mathematical technique for the derivation of the kinetic properties which allows for the application of computer algebra. The book is accompanied by a web page where the molecular dynamics program as well as the computer-algebra programs are provided.
Kinetic Theory of Granular Gases provides an introduction to the
rapidly developing theory of dissipative gas dynamics - a theory
which has mainly evolved over the last decade. The book is aimed at
readers from the advanced undergraduate level upwards and leads on
to the present state of research. Throughout, special emphasis is
put on a microscopically consistent description of pairwise
particle collisions which leads to an impact-velocity-dependent
coefficient of restitution. The description of the many-particle
system, based on the Boltzmann equation, starts with the derivation
of the velocity distribution function, followed by the
investigation of self-diffusion and Brownian motion. Using
hydrodynamical methods, transport processes and self-organized
structure formation are studied.
|
You may like...
|