![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This novel, interdisciplinary text achieves an integration of empirical data and theory with the aid of mathematical models and statistical methods. The emphasis throughout is on spatial ecology and evolution, especially on the interplay between environmental heterogeneity and biological processes. The book provides a coherent theme by interlinking the modelling approaches used for different subfields of spatial ecology: movement ecology, population ecology, community ecology, and genetics and evolutionary ecology (each being represented by a separate chapter). Each chapter starts by describing the concept of each modelling approach in its biological context, goes on to present the relevant mathematical models and statistical methods, and ends with a discussion of the benefits and limitations of each approach. The concepts and techniques discussed throughout the book are illustrated throughout with the help of empirical examples. This is an advanced text suitable for any biologist interested in the integration of empirical data and theory in spatial ecology/evolution through the use of quantitative/statistical methods and mathematical models. The book will also be of relevance and use as a textbook for graduate-level courses in spatial ecology, ecological modelling, theoretical ecology, and statistical ecology.
Joint species distribution modelling (JSDM) is a fast-developing field and promises to revolutionise how data on ecological communities are analysed and interpreted. Written for both readers with a limited statistical background, and those with statistical expertise, this book provides a comprehensive account of JSDM. It enables readers to integrate data on species abundances, environmental covariates, species traits, phylogenetic relationships, and the spatio-temporal context in which the data have been acquired. Step-by-step coverage of the full technical detail of statistical methods is provided, as well as advice on interpreting results of statistical analyses in the broader context of modern community ecology theory. With the advantage of numerous example R-scripts, this is an ideal guide to help graduate students and researchers learn how to conduct and interpret statistical analyses in practice with the R-package Hmsc, providing a fast starting point for applying joint species distribution modelling to their own data.
Joint species distribution modelling (JSDM) is a fast-developing field and promises to revolutionise how data on ecological communities are analysed and interpreted. Written for both readers with a limited statistical background, and those with statistical expertise, this book provides a comprehensive account of JSDM. It enables readers to integrate data on species abundances, environmental covariates, species traits, phylogenetic relationships, and the spatio-temporal context in which the data have been acquired. Step-by-step coverage of the full technical detail of statistical methods is provided, as well as advice on interpreting results of statistical analyses in the broader context of modern community ecology theory. With the advantage of numerous example R-scripts, this is an ideal guide to help graduate students and researchers learn how to conduct and interpret statistical analyses in practice with the R-package Hmsc, providing a fast starting point for applying joint species distribution modelling to their own data.
This novel, interdisciplinary text achieves an integration of empirical data and theory with the aid of mathematical models and statistical methods. The emphasis throughout is on spatial ecology and evolution, especially on the interplay between environmental heterogeneity and biological processes. The book provides a coherent theme by interlinking the modelling approaches used for different subfields of spatial ecology: movement ecology, population ecology, community ecology, and genetics and evolutionary ecology (each being represented by a separate chapter). Each chapter starts by describing the concept of each modelling approach in its biological context, goes on to present the relevant mathematical models and statistical methods, and ends with a discussion of the benefits and limitations of each approach. The concepts and techniques discussed throughout the book are illustrated throughout with the help of empirical examples. This is an advanced text suitable for any biologist interested in the integration of empirical data and theory in spatial ecology/evolution through the use of quantitative/statistical methods and mathematical models. The book will also be of relevance and use as a textbook for graduate-level courses in spatial ecology, ecological modelling, theoretical ecology, and statistical ecology.
|
![]() ![]() You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
![]()
|