Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book features challenging problems of classical analysis that invite the reader to explore a host of strategies and tools used for solving problems of modern topics in real analysis. This volume offers an unusual collection of problems - many of them original - specializing in three topics of mathematical analysis: limits, series, and fractional part integrals. The work is divided into three parts, each containing a chapter dealing with a particular problem type as well as a very short section of hints to select problems. The first chapter collects problems on limits of special sequences and Riemann integrals; the second chapter focuses on the calculation of fractional part integrals with a special section called 'Quickies' which contains problems that have had unexpected succinct solutions. The final chapter offers the reader an assortment of problems with a flavor towards the computational aspects of infinite series and special products, many of which are new to the literature. Each chapter contains a section of difficult problems which are motivated by other problems in the book. These 'Open Problems' may be considered research projects for students who are studying advanced calculus, and which are intended to stimulate creativity and the discovery of new and original methods for proving known results and establishing new ones. This stimulating collection of problems is intended for undergraduate students with a strong background in analysis; graduate students in mathematics, physics, and engineering; researchers; and anyone who works on topics at the crossroad between pure and applied mathematics. Moreover, the level of problems is appropriate for students involved in the Putnam competition and other high level mathematical contests.
This unique and innovative book presents an exciting and complete detail of all the important topics related to the theory of square matrices of order 2. The readers exploring every detailed aspect of matrix theory are gently led toward understanding advanced topics. They will follow every notion of matrix theory with ease, accumulating a thorough understanding of algebraic and geometric aspects of matrices of order 2. The prime jewel of this book is its offering of an unusual collection of problems, theoretically motivated, most of which are new, original, and seeing the light of publication for the first time in the literature. Nearly all of the exercises are presented with detailed solutions and vary in difficulty from easy to more advanced. Many problems are particularly challenging. These, and not only these, invite the reader to unleash their creativity and research capabilities and to discover their own methods of attacking a problem.Matrices have a vast practical importance to mathematics, science, and engineering; therefore the readership of this book is intended to be broad: high school students wishing to learn the fundamentals of matrix theory, first year students who like to participate in mathematical competitions, graduate students who want to learn more about an application of a certain technique, doctoral students who are preparing for their prelim exams in linear algebra, and linear algebra instructors. Chapters 1-3 complement a standard linear algebra course. Pure and applied mathematicians who use matrix theory for their applications will find this book useful as a refresher. In fact, anyone who is willing to explore the methodologies discussed in this book and work through a collection of problems involving matrices of order 2 will be enriched.
This book gathers together a novel collection of problems in mathematical analysis that are challenging and worth studying. They cover most of the classical topics of a course in mathematical analysis, and include challenges presented with an increasing level of difficulty. Problems are designed to encourage creativity, and some of them were especially crafted to lead to open problems which might be of interest for students seeking motivation to get a start in research. The sets of problems are comprised in Part I. The exercises are arranged on topics, many of them being preceded by supporting theory. Content starts with limits, series of real numbers and power series, extending to derivatives and their applications, partial derivatives and implicit functions. Difficult problems have been structured in parts, helping the reader to find a solution. Challenges and open problems are scattered throughout the text, being an invitation to discover new original methods for proving known results and establishing new ones. The final two chapters offer ambitious readers splendid problems and two new proofs of a famous quadratic series involving harmonic numbers. In Part II, the reader will find solutions to the proposed exercises. Undergraduate students in mathematics, physics and engineering, seeking to strengthen their skills in analysis, will most benefit from this work, along with instructors involved in math contests, individuals who want to enrich and test their knowledge in analysis, and anyone willing to explore the standard topics of mathematical analysis in ways that aren't commonly seen in regular textbooks.
This book gathers together a novel collection of problems in mathematical analysis that are challenging and worth studying. They cover most of the classical topics of a course in mathematical analysis, and include challenges presented with an increasing level of difficulty. Problems are designed to encourage creativity, and some of them were especially crafted to lead to open problems which might be of interest for students seeking motivation to get a start in research. The sets of problems are comprised in Part I. The exercises are arranged on topics, many of them being preceded by supporting theory. Content starts with limits, series of real numbers and power series, extending to derivatives and their applications, partial derivatives and implicit functions. Difficult problems have been structured in parts, helping the reader to find a solution. Challenges and open problems are scattered throughout the text, being an invitation to discover new original methods for proving known results and establishing new ones. The final two chapters offer ambitious readers splendid problems and two new proofs of a famous quadratic series involving harmonic numbers. In Part II, the reader will find solutions to the proposed exercises. Undergraduate students in mathematics, physics and engineering, seeking to strengthen their skills in analysis, will most benefit from this work, along with instructors involved in math contests, individuals who want to enrich and test their knowledge in analysis, and anyone willing to explore the standard topics of mathematical analysis in ways that aren't commonly seen in regular textbooks.
|
You may like...
|