![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
Comet nuclei are the most primitive bodies in the solar system. They have been created far away from the early Sun and their material properties have been altered the least since their formation. Thus, the composition and structure of comet nuclei provide the best information about the chemical and thermodynamic conditions in the nebula from which our solar system formed. In this volume, cometary experts review a broad spectrum of ideas and conclusions based on in situ measurement of Comet Halley and remote sensing observations of the recent bright Comets Hale-Bopp and Hyakutake. The chemical character of comet nuclei suggests many close similarities with the composition of interstellar clouds. It also suggests material mixing from the inner solar nebula and challenges the importance of the accretion shock in the outer nebula. The book is intended to serve as a guide for researchers and graduate students working in the field of planetology and solar system exploration. Several special indexes focus the reader's attention to detailed results and discussions. It concludes with recommendations for laboratory investigations and for advanced modeling of comets, the solar nebula, and the collapse of interstellar clouds.
The book presents the most recent developments of laboratory studies in astrophysics and space research. The individual chapters review laboratory investigations under simulated space conditions, studies for the design of successful space experiments or for supporting the interpretation of astronomical and space mission recorded data. Related theoretical models, numerical simulations and in situ observations demonstrate the necessity of experimental work on the Earth's surface. The expertise of the contributing scientists covers a broad spectrum and is included in general overviews from fundamental science to recent space technology. The book intends to serve as a reference for researchers and graduate students on the most recent activities and results in laboratory astrophysics, and to give reviews of their applications in astronomy, planetology, cosmochemistry, space research and Solar System exploration.
Astrobiology, a new exciting interdisciplinary research field, seeks to unravel the origin and evolution of life wherever it might exist in the Universe. The current view of the origin of life on Earth is that it is strongly connected to the origin and evolution of our planet and, indeed, of the Universe as a whole. We are fortunate to be living in an era where centuries of speculation about the two ancient and fundamental problems: the origin of life and its prevalence in the Universe are being replaced by experimental science. The subject of Astrobiology can be approached from many different perspectives. This book is focused on abiogenic organic matter from the viewpoint of astronomy and planetary science and considers its potential relevance to the origins of life on Earth and elsewhere. Guided by the review papers in this book, the concluding chapter aims to identify key questions to motivate future research and stimulate astrobiological applications of current and future research facilities and space missions. Today s rich array of new spacecraft, telescopes and dedicated scientists promises a steady flow of discoveries and insights that will ultimately lead us to the answers we seek. "
The book presents the most recent developments of laboratory studies in astrophysics and space research. The individual chapters review laboratory investigations under simulated space conditions, studies for the design of successful space experiments or for supporting the interpretation of astronomical and space mission recorded data. Related theoretical models, numerical simulations and in situ observations demonstrate the necessity of experimental work on the Earth's surface. The expertise of the contributing scientists covers a broad spectrum and is included in general overviews from fundamental science to recent space technology. The book intends to serve as a reference for researchers and graduate students on the most recent activities and results in laboratory astrophysics, and to give reviews of their applications in astronomy, planetology, cosmochemistry, space research and Solar System exploration.
Comet nuclei are the most primitive bodies in the solar system. They have been created far away from the early Sun and their material properties have been altered the least since their formation. Thus, the composition and structure of comet nuclei provide the best information about the chemical and thermodynamic conditions in the nebula from which our solar system formed. In this volume, cometary experts review a broad spectrum of ideas and conclusions based on in situ measurement of Comet Halley and remote sensing observations of the recent bright Comets Hale-Bopp and Hyakutake. The chemical character of comet nuclei suggests many close similarities with the composition of interstellar clouds. It also suggests material mixing from the inner solar nebula and challenges the importance of the accretion shock in the outer nebula. The book is intended to serve as a guide for researchers and graduate students working in the field of planetology and solar system exploration. Several special indexes focus the reader's attention to detailed results and discussions. It concludes with recommendations for laboratory investigations and for advanced modeling of comets, the solar nebula, and the collapse of interstellar clouds.
Astrobiology, a new exciting interdisciplinary research field, seeks to unravel the origin and evolution of life wherever it might exist in the Universe. The current view of the origin of life on Earth is that it is strongly connected to the origin and evolution of our planet and, indeed, of the Universe as a whole. We are fortunate to be living in an era where centuries of speculation about the two ancient and fundamental problems: the origin of life and its prevalence in the Universe are being replaced by experimental science. The subject of Astrobiology can be approached from many different perspectives. This book is focused on abiogenic organic matter from the viewpoint of astronomy and planetary science and considers its potential relevance to the origins of life on Earth and elsewhere. Guided by the review papers in this book, the concluding chapter aims to identify key questions to motivate future research and stimulate astrobiological applications of current and future research facilities and space missions. Today s rich array of new spacecraft, telescopes and dedicated scientists promises a steady flow of discoveries and insights that will ultimately lead us to the answers we seek. "
|
![]() ![]() You may like...
Hiking Beyond Cape Town - 40 Inspiring…
Nina du Plessis, Willie Olivier
Paperback
|