![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
The last decades have demonstrated that quantum mechanics is an inexhaustible source of inspiration for contemporary mathematical physics. Of course, it seems to be hardly surprising if one casts a glance toward the history of the subject; recall the pioneering works of von Neumann, Weyl, Kato and their followers which pushed forward some of the classical mathematical disciplines: functional analysis, differential equations, group theory, etc. On the other hand, the evident powerful feedback changed the face of the "naive" quantum physics. It created a contem porary quantum mechanics, the mathematical problems of which now constitute the backbone of mathematical physics. The mathematical and physical aspects of these problems cannot be separated, even if one may not share the opinion of Hilbert who rigorously denied differences between pure and applied mathemat ics, and the fruitful oscilllation between the two creates a powerful stimulus for development of mathematical physics. The International Conference on Mathematical Results in Quantum Mechan ics, held in Blossin (near Berlin), May 17-21, 1993, was the fifth in the series of meetings started in Dubna (in the former USSR) in 1987, which were dedicated to mathematical problems of quantum mechanics. A primary motivation of any meeting is certainly to facilitate an exchange of ideas, but there also other goals. The first meeting and those that followed (Dubna, 1988; Dubna, 1989; Liblice (in the Czech Republic), 1990) were aimed, in particular, at paving ways to East-West contacts."
Every part of physics offers examples of non-stability phenomena, but probably nowhere are they so plentiful and worthy of study as in the realm of quantum theory. The present volume is devoted to this problem: we shall be concerned with open quantum systems, i.e. those that cannot be regarded as isolated from the rest of the physical universe. It is a natural framework in which non-stationary processes can be investigated. There are two main approaches to the treatment of open systems in quantum theory. In both the system under consideration is viewed as part of a larger system, assumed to be isolated in a reasonable approximation. They are differentiated mainly by the way in which the state Hilbert space of the open system is related to that of the isolated system - either by orthogonal sum or by tensor product. Though often applicable simultaneously to the same physical situation, these approaches are complementary in a sense and are adapted to different purposes. Here we shall be concerned with the first approach, which is suitable primarily for a description of decay processes, absorption, etc. The second approach is used mostly for the treatment of various relaxation phenomena. It is comparably better examined at present; in particular, the reader may consult a monograph by E. B. Davies.
|
![]() ![]() You may like...
Focus On Operational Management - A…
Andreas de Beer, Dirk Roussow
Paperback
R521
Discovery Miles 5 210
Research Anthology on Strategies for…
Information R Management Association
Hardcover
R14,888
Discovery Miles 148 880
We Are Still Human - And Work Shouldn't…
Brad Shorkend, Andy Golding
Paperback
![]()
Research Anthology on Human Resource…
Information R Management Association
Hardcover
R16,638
Discovery Miles 166 380
|