![]() |
![]() |
Your cart is empty |
||
Showing 1 - 9 of 9 matches in All Departments
Photonics is being labelled by many as the technology for the 21st century. Because of the structural flexibility both at the molecular and bulk levels, organic materials are emerging as a very important class of nonlinear optical materials to be used for generating necessary nonlinear optical functions for the technology of photonics. Since the last NATO advanced research workshop on "Polymers for Nonlinear Optics"held in June 1988, at Nice - Sophia Antipolis, France. there has been a tremendous growth of interest worldwide and important development in this field. Significant progress has been made in theoretical modeling, material development, experimental studies and device concepts utilizing organic materials. These important recent developments provided the rationale for organizing the workshop on "Organic Materials for Nonlinear Optics and Photonics" which was held in La Rochelle, France, in August 1990. This proceeding is the outcome of the workshop held in La Rochelle. The objective of the workshop was to bring together scientists and engineers of varied backgrounds working in this field in order to assess the current status of this field by presenting significant recent developments and make recommendations on future directions of research. The workshop was multidisciplinary as it had contributions from chemists, physicists, materials scientists and device engineers. The participants were both from industries and universities. The workshop included plenary lectures by leading international scientists in this field, contributed research papers and a poster session. Panel discussion groups were organized to summarize important developments and to project future directions.
Photonics, the counterpart of electronics, involves the usage of Photons instead of electrons to process information and perform various switching operations. Photonics is projected to be the technology of the future because of the gain in speed, processing and interconnectivity of network. Nonlinear optical processes will play the key role in photonics Where they can be used for frequency conversion, optical switching and modulation. Organic molecules and polymers have emerged as a new class of highly promising nonlinear optical materials Which has captured the attention of scientists world wide. The organic systems offer the advantage of large nonresonant nonlinearities derived from the 1T electrons contribution, femtosecond response time and the flexibility to modify their molecular structures. In addition, organic polymers can easily be fabricated in various device structures compatible with the fiber-optics communication system. The area of nonlinear optics of organic molecules and polymers offers exciting opportunities for both fundamental research and technologic development. It is truly an interdisciplinary area. This proceeding is the outcome of the first NATO Advanced Research WOrkshop in this highly important area. The objective of the workshop was to provide a forum for scientists of varying background from both universities and industries to come together and interface their expertize. The scope of the workshop was multidisciplinary with active participations from Chemists, physicists, engineers and materials scientists from many countries.
This book provides a comprehensive tutorial on similarity operators. The authors systematically survey the set of similarity operators, primarily focusing on their semantics, while also touching upon mechanisms for processing them effectively. The book starts off by providing introductory material on similarity search systems, highlighting the central role of similarity operators in such systems. This is followed by a systematic categorized overview of the variety of similarity operators that have been proposed in literature over the last two decades, including advanced operators such as RkNN, Reverse k-Ranks, Skyline k-Groups and K-N-Match. Since indexing is a core technology in the practical implementation of similarity operators, various indexing mechanisms are summarized. Finally, current research challenges are outlined, so as to enable interested readers to identify potential directions for future investigations. In summary, this book offers a comprehensive overview of the field of similarity search operators, allowing readers to understand the area of similarity operators as it stands today, and in addition providing them with the background needed to understand recent novel approaches.
Photonics is being labelled by many as the technology for the 21st century. Because of the structural flexibility both at the molecular and bulk levels, organic materials are emerging as a very important class of nonlinear optical materials to be used for generating necessary nonlinear optical functions for the technology of photonics. Since the last NATO advanced research workshop on "Polymers for Nonlinear Optics"held in June 1988, at Nice - Sophia Antipolis, France. there has been a tremendous growth of interest worldwide and important development in this field. Significant progress has been made in theoretical modeling, material development, experimental studies and device concepts utilizing organic materials. These important recent developments provided the rationale for organizing the workshop on "Organic Materials for Nonlinear Optics and Photonics" which was held in La Rochelle, France, in August 1990. This proceeding is the outcome of the workshop held in La Rochelle. The objective of the workshop was to bring together scientists and engineers of varied backgrounds working in this field in order to assess the current status of this field by presenting significant recent developments and make recommendations on future directions of research. The workshop was multidisciplinary as it had contributions from chemists, physicists, materials scientists and device engineers. The participants were both from industries and universities. The workshop included plenary lectures by leading international scientists in this field, contributed research papers and a poster session. Panel discussion groups were organized to summarize important developments and to project future directions.
Surface Mount Technology is not a technology of tommorrow but a technology of today. It provides a quantum jump in the packaging tech nology to produce state-of-the-art miniaturized electronic products. How ever, in order to take advantage of this technology, a complete infrastruc ture must be put in place. This requires considerable investment in human and capital resources. Intel corporation has made these investments to keep its customers for components and systems on the leading edge of technology. Based on the experience of putting this infrastructure in place for system products, this book is written for managers who need to manage the risk during its implementation, and the practicing engineers who need to improve the design and manufacturing processes for improved yield and cost reduction. To accomplish this task, I have not only culled the infor mation from published materials, but have also depended on input from both my colleagues in Intel and such outside organizations as the Institute of interconnecting and Packaging electronic Circuits (IPC), the Electronics Industries Association (EIA), and the Surface Mount Council. But the underlying basis for this book has been my first-hand experience in im plementing this technology for Intel Systems Group and my experience at Boeing, my previous employer. In a fast-changing technology like SMT, it is very easy to have obsolete information even before the book is published. For this reason, I have concentrated on the basic principles and practice of the technology."
Photonics, the counterpart of electronics, involves the usage of Photons instead of electrons to process information and perform various switching operations. Photonics is projected to be the technology of the future because of the gain in speed, processing and interconnectivity of network. Nonlinear optical processes will play the key role in photonics Where they can be used for frequency conversion, optical switching and modulation. Organic molecules and polymers have emerged as a new class of highly promising nonlinear optical materials Which has captured the attention of scientists world wide. The organic systems offer the advantage of large nonresonant nonlinearities derived from the 1T electrons contribution, femtosecond response time and the flexibility to modify their molecular structures. In addition, organic polymers can easily be fabricated in various device structures compatible with the fiber-optics communication system. The area of nonlinear optics of organic molecules and polymers offers exciting opportunities for both fundamental research and technologic development. It is truly an interdisciplinary area. This proceeding is the outcome of the first NATO Advanced Research WOrkshop in this highly important area. The objective of the workshop was to provide a forum for scientists of varying background from both universities and industries to come together and interface their expertize. The scope of the workshop was multidisciplinary with active participations from Chemists, physicists, engineers and materials scientists from many countries.
|
![]() ![]() You may like...
Talking To Strangers - What We Should…
Malcolm Gladwell
Paperback
![]()
African Metaphysics, Epistemology and a…
Jonathan O. Chimakonam, L. Uchenna Ogbonnaya
Hardcover
R3,119
Discovery Miles 31 190
Haunting Hands - Mobile Media Practices…
Kathleen M. Cumiskey, Larissa Hjorth
Hardcover
R3,473
Discovery Miles 34 730
Burn Care: Rescue, Resuscitation, and…
C. Scott Hultman, Michael W. Neumeister
Hardcover
R2,470
Discovery Miles 24 700
|