Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods. Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure gas. This volume clearly reveals the ingenuity of the human mind to conceptualize, model, and mathematically analyze highly complicated nonlinear phenomena such as nuclear explosions. It presents a solid foundation of knowledge that encourages further research and original ideas.
A large number of physical phenomena are modeled by nonlinear partial differential equations, subject to appropriate initial/ boundary conditions; these equations, in general, do not admit exact solution. The present monograph gives constructive mathematical techniques which bring out large time behavior of solutions of these model equations. These approaches, in conjunction with modern computational methods, help solve physical problems in a satisfactory manner. The asymptotic methods dealt with here include self-similarity, balancing argument, and matched asymptotic expansions. The physical models discussed in some detail here relate to porous media equation, heat equation with absorption, generalized Fisher's equation, Burgers equation and its generalizations. A chapter each is devoted to nonlinear diffusion and fluid mechanics. The present book will be found useful by applied mathematicians, physicists, engineers and biologists, and would considerably help understand diverse natural phenomena.
Nonlinearity plays a major role in the understanding of most physical, chemical, biological, and engineering sciences. Nonlinear problems fascinate scientists and engineers, but often elude exact treatment. However elusive they may be, the solutions do exist-if only one perseveres in seeking them out. Self-Similarity and Beyond presents a myriad of approaches to finding exact solutions for a diversity of nonlinear problems. These include group-theoretic methods, the direct method of Clarkson and Kruskal, traveling waves, hodograph methods, balancing arguments, embedding special solutions into a more general class, and the infinite series approach. The author's approach is entirely constructive. Numerical solutions either motivate the analysis or confirm it, therefore they are treated alongside the analysis whenever possible. Many examples drawn from real physical situations-primarily fluid mechanics and nonlinear diffusion-illustrate and emphasize the central points presented. Accessible to a broad base of readers, Self-Similarity and Beyond illuminates a variety of productive methods for meeting the challenges of nonlinearity. Researchers and graduate students in nonlinearity, partial differential equations, and fluid mechanics, along with mathematical physicists and numerical analysts, will re-discover the importance of exact solutions and find valuable additions to their mathematical toolkits.
Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods. Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure gas. This volume clearly reveals the ingenuity of the human mind to conceptualize, model, and mathematically analyze highly complicated nonlinear phenomena such as nuclear explosions. It presents a solid foundation of knowledge that encourages further research and original ideas.
Nonlinearity plays a major role in the understanding of most physical, chemical, biological, and engineering sciences.
This monograph deals with Burgers' equation and its generalisations. Such equations describe a wide variety of nonlinear diffusive phenomena, for instance, in nonlinear acoustics, laser physics, plasmas and atmospheric physics. The Burgers equation also has mathematical interest as a canonical nonlinear parabolic differential equation that can be exactly linearised. It is closely related to equations that display soliton behaviour and its study has helped elucidate other such nonlinear behaviour. The approach adopted here is applied mathematical. The author discusses fully the mathematical properties of standard nonlinear diffusion equations, and contrasts them with those of Burgers' equation. Of particular mathematical interest is the treatment of self-similar solutions as intermediate asymptotics for a large class of initial value problems whose solutions evolve into self-similar forms. This is achieved both analytically and numerically.
A large number of physical phenomena are modeled by nonlinear partial differential equations, subject to appropriate initial/ boundary conditions; these equations, in general, do not admit exact solution. The present monograph gives constructive mathematical techniques which bring out large time behavior of solutions of these model equations. These approaches, in conjunction with modern computational methods, help solve physical problems in a satisfactory manner. The asymptotic methods dealt with here include self-similarity, balancing argument, and matched asymptotic expansions. The physical models discussed in some detail here relate to porous media equation, heat equation with absorption, generalized Fisher's equation, Burgers equation and its generalizations. A chapter each is devoted to nonlinear diffusion and fluid mechanics. The present book will be found useful by applied mathematicians, physicists, engineers and biologists, and would considerably help understand diverse natural phenomena.
This unique monograph presents a collection of papers by leading international fluid dynamicists and applied mathematicians demonstrating the latest state of the art in fluid mechanics. The vast scope and breadth of this subject is illustrated with sections covering evolution in flow problems, convection and transport phenomena, dynamics of atmosphere, and wave propagation.
The First Pan-China Conference on Differential Equations was held
in Kunming, China in June of 1997. Researchers from around the
world attended-including representatives from the US, Canada, and
the Netherlands-but the majority of the speakers hailed from China
and Hong Kong. This volume contains the plenary lectures and
invited talks presented at that conference, and provides an
excellent view of the research on differential equations being
carried out in China.
|
You may like...
|