Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
This volume considers resistance networks: large graphs which are connected, undirected, and weighted. Such networks provide a discrete model for physical processes in inhomogeneous media, including heat flow through perforated or porous media. These graphs also arise in data science, e.g., considering geometrizations of datasets, statistical inference, or the propagation of memes through social networks. Indeed, network analysis plays a crucial role in many other areas of data science and engineering. In these models, the weights on the edges may be understood as conductances, or as a measure of similarity. Resistance networks also arise in probability, as they correspond to a broad class of Markov chains.The present volume takes the nonstandard approach of analyzing resistance networks from the point of view of Hilbert space theory, where the inner product is defined in terms of Dirichlet energy. The resulting viewpoint emphasizes orthogonality over convexity and provides new insights into the connections between harmonic functions, operators, and boundary theory. Novel applications to mathematical physics are given, especially in regard to the question of self-adjointness of unbounded operators.New topics are covered in a host of areas accessible to multiple audiences, at both beginning and more advanced levels. This is accomplished by directly linking diverse applied questions to such key areas of mathematics as functional analysis, operator theory, harmonic analysis, optimization, approximation theory, and probability theory.
This book combining wavelets and the world of the spectrum focuses on recent developments in wavelet theory, emphasizing fundamental and relatively timeless techniques that have a geometric and spectral-theoretic flavor. The exposition is clearly motivated and unfolds systematically, aided by numerous graphics.This self-contained book deals with important applications to signal processing, communications engineering, computer graphics algorithms, qubit algorithms and chaos theory, and is aimed at a broad readership of graduate students, practitioners, and researchers in applied mathematics and engineering. The book is also useful for other mathematicians with an interest in the interface between mathematics and communication theory.
This book presents the mathematics of wavelet theory and its applications in a broader sense, comprising entropy encoding, lifting scheme, matrix factorization, and fractals. It also encompasses image compression examples using wavelet transform and includes the principal component analysis which is a hot topic on data dimension reduction in machine learning.Readers will find equal coverage on the following three themes:The book entails a varied choice of diverse interdisciplinary themes. While the topics can be found in various parts of the pure and applied literature, this book fulfills the need for an accessible presentation which cuts across the fields.As the target audience is wide-ranging, a detailed and systematic discussion of issues involving infinite dimensions and Hilbert space is presented in later chapters on wavelets, transform theory and, entropy encoding and probability. For the problems addressed there, the case of infinite dimension will be more natural, and well-motivated.
The purpose of this book is to make available to beginning graduate students, and to others, some core areas of analysis which serve as prerequisites for new developments in pure and applied areas. We begin with a presentation (Chapters 1 and 2) of a selection of topics from the theory of operators in Hilbert space, algebras of operators, and their corresponding spectral theory. This is a systematic presentation of interrelated topics from infinite-dimensional and non-commutative analysis; again, with view to applications. Chapter 3 covers a study of representations of the canonical commutation relations (CCRs); with emphasis on the requirements of infinite-dimensional calculus of variations, often referred to as Ito and Malliavin calculus, Chapters 4-6. This further connects to key areas in quantum physics.
'This is a book to be read and worked with. For a beginning graduate student, this can be a valuable experience which at some points in fact leads up to recent research. For such a reader there is also historical information included and many comments aiming at an overview. It is inspiring and original how old material is combined and mixed with new material. There is always something unexpected included in each chapter, which one is thankful to see explained in this context and not only in research papers which are more difficult to access.'Mathematical Reviews ClippingsThe book features new directions in analysis, with an emphasis on Hilbert space, mathematical physics, and stochastic processes. We interpret 'non-commutative analysis' broadly to include representations of non-Abelian groups, and non-Abelian algebras; emphasis on Lie groups and operator algebras (C* algebras and von Neumann algebras.)A second theme is commutative and non-commutative harmonic analysis, spectral theory, operator theory and their applications. The list of topics includes shift invariant spaces, group action in differential geometry, and frame theory (over-complete bases) and their applications to engineering (signal processing and multiplexing), projective multi-resolutions, and free probability algebras.The book serves as an accessible introduction, offering a timeless presentation, attractive and accessible to students, both in mathematics and in neighboring fields.
'This is a book to be read and worked with. For a beginning graduate student, this can be a valuable experience which at some points in fact leads up to recent research. For such a reader there is also historical information included and many comments aiming at an overview. It is inspiring and original how old material is combined and mixed with new material. There is always something unexpected included in each chapter, which one is thankful to see explained in this context and not only in research papers which are more difficult to access.'Mathematical Reviews ClippingsThe book features new directions in analysis, with an emphasis on Hilbert space, mathematical physics, and stochastic processes. We interpret 'non-commutative analysis' broadly to include representations of non-Abelian groups, and non-Abelian algebras; emphasis on Lie groups and operator algebras (C* algebras and von Neumann algebras.)A second theme is commutative and non-commutative harmonic analysis, spectral theory, operator theory and their applications. The list of topics includes shift invariant spaces, group action in differential geometry, and frame theory (over-complete bases) and their applications to engineering (signal processing and multiplexing), projective multi-resolutions, and free probability algebras.The book serves as an accessible introduction, offering a timeless presentation, attractive and accessible to students, both in mathematics and in neighboring fields.
ADVAI\CES in communication, sensing, and computational power have Jed to an cxplosion of data. The size and varied formats for these datasets challenge existing techniqucs for transmission, storage, querying, display, and numerical manipula tion. This Ieads to the paradoxical situation where experiments or numerical com pulations produce rich, detailed inforrnation, for which, at this point, no adequate analysis tools exist. -Conference annow cement, Joint IDR-1/v A Workshop on Ideal Data Nepresentaticm, Minneapolis, R. De\'ore and A. Ron, cJ/gani ers Wavelct theory stands on the interface betwccn signal processing and harmonic analy sis, the rnathematical tools involved in digitizing continuous data with a vicw to storage, and thc synthesis proccss, recreating, for cxample, a picturc or time signal from stored data. The algorithms involved go under the name of tilter banks, and their spectacular efticiency derivcs in patt from the use of hidden self-similarity, relati\ c to somc scaling operation, in the daLJ. being analyzed. Observations or time signals are functions, and classes of functions make up linear spaces. Numcrical correlations add structure to thc spaccs at hand, Hilbcrt spaces. There are opcrators in the spaces deriving lrom the dis crcte data and others from the spaces of continuous signals. The first type arc good for computations, whilc the sccond retlect the real world. The operators between thc two are the focus of the prescnt monograph. Relations between operations in thc discrete xn Preface and continuous domains are studied as symbols."
|
You may like...
|