![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
The word holor is a term coined by the authors to describe a mathematical entity that is made up of one or more independent quantities, and includes complex numbers, scalars, vectors, matrices, tensors, quaternions, and other hypernumbers. Holors, thus defined, have been known for centuries but each has been developed more or less independently, accompanied by separate nomenclature and theory. This book demonstrates how these complicated subjects can be made simple by using a single notation that applies to all holors, both tensor and nontensor. The authors consider all possible types of holors and develop holor algebra and holor calculus in the most general sense. Thus the reader will learn to develop a new holor that fits the application, rather than forcing an application onto a holor representation that is known but that does not perfectly describe the application. The discussion includes nontensors having no transformation and holors that transform in more complicated ways than allowed with ordinary tensors. This opens up the possibility to devise a holor for a new physical application, without being limited to a few conventional types of holor. This book should establish a method by which students and teachers can learn vector and tensor analysis via a uniform treatment. Graduate students and professionals in engineering, physics. applied mathematics, chemistry, biology, psychology, and other analytical sciences should find this to be a useful and innovative work.
The word holor is a term coined by the authors to describe a mathematical entity that is made up of one or more independent quantities, and includes complex numbers, scalars, vectors, matrices, tensors, quaternions, and other hypernumbers. Holors, thus defined, have been known for centuries but each has been developed more or less independently, accompanied by separate nomenclature and theory. This book demonstrates how these complicated subjects can be made simple by using a single notation that applies to all holors, both tensor and nontensor. The authors consider all possible types of holors and develop holor algebra and holor calculus in the most general sense. Thus the reader will learn to develop a new holor that fits the application, rather than forcing an application onto a holor representation that is known but that does not perfectly describe the application. The discussion includes nontensors having no transformation and holors that transform in more complicated ways than allowed with ordinary tensors. This opens up the possibility to devise a holor for a new physical application, without being limited to a few conventional types of holor. This book should establish a method by which students and teachers can learn vector and tensor analysis via a uniform treatment. Graduate students and professionals in engineering, physics. applied mathematics, chemistry, biology, psychology, and other analytical sciences should find this to be a useful and innovative work.
|
![]() ![]() You may like...
Fictions of Dementia - Narrative Modes…
Susanne Katharina Christ
Hardcover
R3,238
Discovery Miles 32 380
Using Technology, Building Democracy…
Jessica Baldwin-Philippi
Hardcover
R3,788
Discovery Miles 37 880
The Illio; 1971 (vol. 78)
University of Illinois (Urbana-Champa
Hardcover
R1,041
Discovery Miles 10 410
New Views of the Origin of the Tribes…
Benjamin Smith 1766-1815 Barton
Hardcover
R940
Discovery Miles 9 400
|