Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Given that thermodynamics books are not a rarity on the market, why would an additional one be useful? The answer is simple: at any level, thermodynamics is usually taught as a somewhat abstruse discipline where many students get lost in a maze of difficult concepts. However, thermodynamics is not as intricate a subject as most people feel. This book fills a niche between elementary textbooks and mathematically oriented treatises, and provides readers with a distinct approach to the subject. As indicated by the title, this book explains thermodynamic phenomena and concepts in physical terms before proceeding to focus on the requisite mathematical aspects. It focuses on the effects of pressure, temperature and chemical composition on thermodynamic properties and places emphasis on rapidly evolving fields such as amorphous materials, metastable phases, numerical simulations of microsystems and high-pressure thermodynamics. Topics like redox reactions are dealt with in less depth, due to the fact that there is already much literature available. Without requiring a background in quantum mechanics, this book also illustrates the main practical applications of statistical thermodynamics and gives a microscopic interpretation of temperature, pressure and entropy. This book is perfect for undergraduate and graduate students who already have a basic knowledge of thermodynamics and who wish to truly understand the subject and put it in a broader physical perspective. The book is aimed not at theoretical physicists, but rather at practitioners with a variety of backgrounds from physics to biochemistry for whom thermodynamics is a tool which would be better used if better understood.
This book presents thermodynamic data on oxides in the system MgO-FeO-Fe2O3-Al2O3-SiO2. These data are produced by a process of assessment that involves the integration of thermochemical (calorimetric) and phase equilibrium data. The latter have been selected from a number of publications in high-pressure research conducted at pressures and temperatures in the range of 1 bar to several Giga Pascals and 300 to 2500 K respectively. A unique feature of the database is that the assessment involves not only the thermodynamic data on pure end member species, but also the data on multicomponent solutions. Since the solution description follows the format used in the popular thermodynamic computational packages such as FACTSAGE, ChemSage and Thermocalc, the database is easy to incorporate in the currently used databases in these packages. The database is highly useful to those working in the field of metallurgy (e.g. slags) and ceramics. It is essential for all those who do thermodynamic modeling of the terrestrial planetary interiors.
This book involves application of the Calphad method for derivation of a self consistent thermodynamic database for the geologically important system Mg0- Fe0-Fe203-Alz03-Si02 at pressures and temperatures of Earth's upper mantle and the transition zone of that mantle for Earth. The created thermodynamic database reproduces phase relations at 1 bar and at pressures up to 30 GPa. The minerals are modelled by compound energy formalism, which gives realistic descriptions of their Gibbs energy and takes into account crystal structure data. It incorporates a detailed review of diverse types of experimental data which are used to derive the thermodynamic database: phase equilibria, calorimetric stud ies, and thermoelastic property measurements. The book also contains tables of thermodynamic properties at 1 bar (enthalpy and Gibbs energy of formation from the elements, entropy, and heat capacity, and equation of state data at pressures from 1 bar to 30 GPa. Mixing parameters of solid solutions are also provided by the book. Table of Contents Introduction to the Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI Co-Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII Vitae of Co-Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XV CODATA Task Group on Geothermodynamic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXIII Chapter 1. Thermodynamics and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 Thermodynamic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 3 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 4 Programs and Assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 System and Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1. 5 Chapter 2. Experimental Phase Equilibrium Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 The Si02 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 1 2. 2 The Fe-0 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. 3 The Fe-Si-0 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2. 4 The Mg0-Si0 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For most of history, people trusted mythology or religion to provide an answer to the pressing question of the earth's age, even though nature abounds with clues. In "A Natural History of Time", geophysicist Pascal Richet tells the fascinating story of how scientists and philosophers examined those clues and from them built a chronological scale that has made it possible to reconstruct the history of nature itself. The quest for time is a story of ingenuity and determination, and like a geologist, Pascal Richet carefully peels back the strata of that history, giving us a chance to marvel at each layer and truly appreciate how far our knowledge - and our planet - have come.
Given that thermodynamics books are not a rarity on the market, why would an additional one be useful? The answer is simple: at any level, thermodynamics is usually taught as a somewhat abstruse discipline where many students get lost in a maze of difficult concepts. However, thermodynamics is not as intricate a subject as most people feel. This book fills a niche between elementary textbooks and mathematically oriented treatises, and provides readers with a distinct approach to the subject. As indicated by the title, this book explains thermodynamic phenomena and concepts in physical terms before proceeding to focus on the requisite mathematical aspects. It focuses on the effects of pressure, temperature and chemical composition on thermodynamic properties and places emphasis on rapidly evolving fields such as amorphous materials, metastable phases, numerical simulations of microsystems and high-pressure thermodynamics. Topics like redox reactions are dealt with in less depth, due to the fact that there is already much literature available. Without requiring a background in quantum mechanics, this book also illustrates the main practical applications of statistical thermodynamics and gives a microscopic interpretation of temperature, pressure and entropy. This book is perfect for undergraduate and graduate students who already have a basic knowledge of thermodynamics and who wish to truly understand the subject and put it in a broader physical perspective. The book is aimed not at theoretical physicists, but rather at practitioners with a variety of backgrounds from physics to biochemistry for whom thermodynamics is a tool which would be better used if better understood.
The quest to pinpoint the age of the Earth is nearly as old as
humanity itself. For most of history, people trusted mythology or
religion to provide the answer, even though nature abounds with
clues to the past of the Earth and the stars. In "A Natural History
of Time," geophysicist Pascal Richet tells the fascinating story of
how scientists and philosophers examined those clues and from them
built a chronological scale that has made it possible to
reconstruct the history of nature itself.
|
You may like...
Surfacing - On Being Black And Feminist…
Desiree Lewis, Gabeba Baderoon
Paperback
|